CSE 461: Midterm Review

Winter 2024

Administrivia

- Midterm!
 - Tomorrow
- Assignment 3 is due Monday, February 12
- Project 2 is due Saturday, February 17

Network Components

- Parts of a Network
- Types of Links
- Protocols and Layers
- Encapsulation

Parts of a Network

• Parts of a Network

• Types of Links

Protocols and Layers

	Purpose	Protocols	Unit of Data		
Application	Programs that use network service	HTTP, DNS	Message		
Transport	Provides end-to-end data delivery	TCP, UDP	Segment		
Network	Sends packets across multiple networks	IP	Packet		
Link	Sends frames across a link	Ethernet, Cable	Frame		
Physical	Transmit bits	Bit			

Protocols and Layers

ADVANTAGES

- Use information hiding to connect different systems
- Information reuse to build new protocols

DISADVANTAGES

- Adds overhead
- Hides information

Encapsulation

Physical Layer

- Coding: Clock Recovery
- Modulation
- Latency
- Media and Theoretical Limits

Coding: Clock Recovery

- One answer 4B/5B
 - map every 4 data bits to 5 data bits
 - such that there are no more than 3 zeros in a row
 - invert signal level on a 1 to break up long runs of 1s

Modulation

• Baseband modulation allows signal to be sent directly on wire

Latency

- Latency = Transmission Delay + Propagation Delay
- Transmission Delay = M (bits) / R (bits/sec) = M/R (sec)
- Propagation Delay = Length / Speed of Signals = Length / $\frac{2}{3}c = D$ (sec)

- Bandwidth-Delay Product = R (bits/sec) x D (sec) = BD (bits)
- RTT = round-trip time

Media and Theoretical Limits

- Media
 - Wire, Fiber
 - Wireless: radiates signal over a region
- Channel Limits: how rapidly can we send information over a link?
 - Bandwidth (B), Signal Power (S), Noise Power (N)
 - Shannon Capacity maximum lossless info carrying rate

Link Layer

- Framing
- Error detection and correction
- Retransmissions
- Multiple Access
- Switching

Framing

Framing Methods

- How do we know where a bit sequence (frame) begins and ends?
 - Byte count
 - Byte stuffing
 - Bit stuffing

Framing Methods

- Byte Stuffing
 - Replace ESC in data with ESC ESC, and replace FLAG in data with ESC FLAG

FLAG	Header	Payload field	Trailer	FLAG
------	--------	---------------	---------	------

- Bit Stuffing
 - Sequences of 1s as flag, and then add 0 after each flag within data

Data bits 0110111111111111111110010

Error Detection and Correction

Error Detection and Correction

- Add check bits to the message bits to let some errors be detected
- Add more check bits to let some errors be corrected

Hamming Distance

- HD between two codes (D1, D2)
 - the number of bit flips needed to change D1 to D2
 - D1 = 0110110101001
 - D2 = 0100000100001
- HD of a coding
 - the minimum error distance between any pair of codewords that cannot be detected
- For a Hamming distance of d + 1, up to d errors will be **detected**
- For a Hamming distance of 2d + 1, up to d errors can be corrected

Error Detection Methods

	Description	Hamming Distance	
Parity Bit	Add 1 check bit that is sum/XOR of d data bits	2	
Internet Checksum	1s complement sum of 16 bit word	2	
Cyclic Redundancy Check (CRC)	For n data bits, generate n+k bits that are evenly divisible by C	4(CRC32)	

HD of Internet Checksum

Error Correction - Hamming Code

Hamming Distance = 3

Suppose we want to send a message M of 4 bits: **0101** We add k=3 check bits, because (n = $2^{k} - k - 1 = 2^{3} - 3 - 1 = 4$)

So, we will have a n+k = 7 bit code, with check bits in positions 1, 2, 4 Each check bit is an XOR of certain positions.

Error Correction - Hamming Code

		421			4 2 1			4 21
1	=	0b00 1	1	=	0b001	1	=	0b001
2	=	0b010	2	=	0b0 1 0	2	=	0b010
3	=	0b01 1	3	=	0b0 1 1	3	=	0b011
4	=	0b100	4	=	0b100	4	=	0b 1 00
5	=	0b10 1	5	=	0b101	5	=	0b 1 01
6	=	0b110	6	=	0b1 1 0	6	=	0b 1 10
7	=	0b11 1	7	=	0b1 1 1	7	=	0b 1 11

0 1 0 0 1 0 1 1 2 3 4 5 6 7 p1 = b3+b5+b7 = 0+1+1 = 0 p2 = b3+b6+b7 = 0+0+1 = 1 p4 = b5+b6+b7 = 1+0+1 = 0 • Example, continued $\longrightarrow \underbrace{0}_{1} \underbrace{1}_{2} \underbrace{0}_{3} \underbrace{0}_{4} \underbrace{1}_{5} \underbrace{1}_{6} \underbrace{1}_{7} \underbrace{1$

Syndrome = 1 1 0, flip position 6 Data = 0 1 0 1 (correct after flip!) Retransmissions

ARQ - Automatic Repeat Request

- ARQ

 Wait-Resend
- Stop-and-wait
 - Single bit SEQ
- Sliding window

Multiple Access

Multiplexing

- Multiplexing is the network word for the sharing of a resource
- Time Division Multiplexing high rate at some times

• FDM - low rate all the time

Multiple Access

- ALOHA: Node just sends when it has traffic; if collision happens, wait for a random amount of time and try again.
 - Huge amount of loss under high load
- CSMA (Carrier Sense Multiple Access): Listen before send.
 - \circ Collision is still possible because of delay; good only when BD is small
- CSMA/CD (Carrier Sense Multiple Access with Collision Detection): CSMA + Aborting JAM for the rest of the frame time
 - $\circ \quad \mbox{Minimum frame length of 2D seconds}$
- CSMA "Persistence": CSMA + P(send) = 1 / N
 - Reduce the chance of collision
- Binary Exponential Backoff (BEB): Doubles interval for each successive collision
 - Very efficient in practice

Issues with Wireless

Hidden Terminal Problem: nodes A and C are hidden terminals when sending to B

Exposed Terminal Problem: nodes B and C are exposed terminals when sending to A and D

Send(RTS) and receiver replies Clear To Send(CTS).

Switches

- Backward Learning
 - Learn the sender's port by looking at the packets
- Spanning Tree
 - Pick a root (Usually the switch with the lowest address)
 - Grow based on the shortest distance from the root
 - Ports not on the spanning tree are turned off

