Where we are in the Course

- More fun in the Network Layer!
- We've covered packet forwarding
- Now we'll learn about routing

Application
Transport
Network
Link
Physical

Improving on the Spanning Tree

- Spanning tree provides basic connectivity
- e.g., some path $B \rightarrow C$

- Routing uses all links to find "best" paths
- e.g., use BC, BE, and CE

Delivery Models

- Different routing used for different delivery models

Anycast
(§5.2.9)

Goals of Routing Algorithms

- We want several properties of any routing scheme:

Property	Meaning
Correctness	Finds paths that work
Efficient paths	Uses network bandwidth well
Fair paths	Doesn't starve any nodes
Fast convergence	Recovers quickly after changes
Scalability	Works well as network grows large

Rules of Routing Algorithms

- Decentralized, distributed setting
- All nodes are alike; no controller
- Nodes only know what they learn by exchanging messages with neighbors
- Nodes operate concurrently
- May be node/link/message failures

Topics

- IPv4, IPv6, NATs and all that $\begin{aligned} & \text { Last } \\ & \text { time }\end{aligned}$
- Shortest path routing
- Distance Vector routing
- Flooding
- Link-state routing
- Equal-cost multi-path
- Inter-domain routing (BGP)

Topic

- Defining "best" paths with link costs
- These are shortest path routes

What are "Best" paths anyhow?

- Many possibilities:
- Latency, avoid circuitous paths
- Bandwidth, avoid slow links
- Money, avoid expensive links
- Hops, to reduce switching
- But only consider topology
- Ignore workload, e.g., hotspots

Shortest Paths

We'll approximate "best" by a cost function that captures the factors

- Often call lowest "shortest"

1. Assign each link a cost (distance)
2. Define best path between each pair of nodes as the path that has the lowest total cost (or is shortest)
3. Pick randomly to any break ties

Shortest Paths (2)

- Find the shortest path $\mathrm{A} \rightarrow \mathrm{E}$
- All links are bidirectional, with equal costs in each direction
- Can extend model to unequal costs if needed

Shortest Paths (3)

- $A B C E$ is a shortest path
- $\operatorname{dist}(\mathrm{ABCE})=4+2+1=7$
- This is less than:
$-\operatorname{dist}(\mathrm{ABE})=8$
$-\operatorname{dist}(A B F E)=9$
$-\operatorname{dist}(\mathrm{AE})=10$
$-\operatorname{dist}(\mathrm{ABCDE})=10$

Shortest Paths (4)

- Optimality property:
- Subpaths of shortest paths are also shortest paths
- $A B C E$ is a shortest path

Sink Trees

- Sink tree for a destination is the union of all shortest paths towards the destination
- Similarly source tree
- Find the sink tree for E

Sink Trees (2)

- Implications:
- Only need to use destination to follow shortest paths
- Each node only need to send to the next hop
- Forwarding table at a node

Topic

- How to compute shortest paths given the network topology
- With Dijkstra's algorithm

Edsger W. Dijkstra (1930-2002)

- Famous computer scientist
- Programming languages
- Distributed algorithms
- Program verification
- Dijkstra's algorithm, 1969
- Single-source shortest paths, given network with non-negative link costs

Dijkstra’s Algorithm

Algorithm:

- Mark all nodes tentative, set distances from source to 0 (zero) for source, and ∞ (infinity) for all other nodes
- While tentative nodes remain:
- Extract N , a node with lowest distance
- Add link to N to the shortest path tree
- Relax the distances of neighbors of N by lowering any better distance estimates

Dijkstra’s Algorithm (2)

- Initialization

Dijkstra's Algorithm (3)

- Relax around A

Dijkstra's Algorithm (4)

- Relax around B

Dijkstra's Algorithm (5)

- Relax around C

Dijkstra's Algorithm (6)

- Relax around G (say)

Dijkstra’s Algorithm (7)

- Relax around F (say)

Dijkstra's Algorithm (8)

- Relax around E

Dijkstra's Algorithm (9)

- Relax around D

Dijkstra's Algorithm (10)

- Finally, H ... done

Dijkstra Comments

- Finds shortest paths in order of increasing distance from source
- Leverages optimality property
- Runtime depends on efficiency of extracting min-cost node
- Superlinear in network size (grows fast)
- Gives complete source/sink tree
- More than needed for forwarding!
- But requires complete topology

Topic

- How to compute shortest paths in a distributed network
- The Distance Vector (DV) approach

Distance Vector Routing

- Simple, early routing approach
- Used in ARPANET, and RIP
- One of two main approaches to routing
- Distributed version of Bellman-Ford
- Works, but very slow convergence after some failures
- Link-state algorithms are now typically used in practice
- More involved, better behavior

Distance Vector Setting

Each node computes its forwarding table in a distributed setting:

1. Nodes know only the cost to their neighbors; not the topology
2. Nodes can talk only to their neighbors using messages
3. All nodes run the same algorithm concurrently
4. Nodes and links may fail, messages may be lost

Distance Vector Algorithm

Each node maintains a vector of distances (and next hops) to all destinations

1. Initialize vector with 0 (zero) cost to self, ∞ (infinity) to other destinations
2. Periodically send vector to neighbors
3. Update vector for each destination by selecting the shortest distance heard, after adding cost of neighbor link

- Use the best neighbor for forwarding

Distance Vector (2)

- Consider from the point of view of node A
- Can only talk to nodes B and E

Initial \longrightarrow
vector

To	Cost
A	0
B	∞
C	∞
D	∞
E	∞
F	∞
G	∞
H	∞

Distance Vector (3)

- First exchange with B, E; learn best 1-hop routes

To	$\begin{array}{\|c\|} \hline \text { B } \\ \text { says } \end{array}$	$\begin{gathered} \mathrm{E} \\ \text { says } \end{gathered}$	$\begin{gathered} \text { B } \\ +4 \end{gathered}$	$\begin{gathered} \mathrm{E} \\ +10 \end{gathered}$	\rightarrow	A's Cost	A's Next
A	∞	∞	∞	∞		0	--
B	0	∞	4	∞		4	B
C	∞	∞	∞	∞		∞	--
D	∞	∞	∞	∞		∞	--
E	∞	0	∞	10		10	E
F	∞	∞	∞	∞		∞	--
G	∞	∞	∞	∞		∞	--
H	∞	∞	∞	∞		∞	--

Distance Vector (4)

- Second exchange; learn best 2-hop routes

To	B says	E says			
A	4	10			
B	0	4			
C	2	1			
D	∞	2			
E	4	0			
F	3	2			
G	3	∞			
H	∞	∞	\quad	B $\mathbf{+ 4}$	E $\mathbf{+ 1 0}$
:---:	:---:				
8	20				
4	14				
6	11				
∞	12				
8	10				
7	12				
7	∞				
∞	∞	$\quad \rightarrow$	A's Cost	A's Next	
:---:	:---:				
0	--				
4	B				
6	B				
12	E				
8	B				
7	B				
7	B				
∞	--				

Distance Vector (4)

- Third exchange; learn best 3-hop routes

To	B says	E says			
A	4	8			
B	0	3			
C	2	1			
D	4	2			
E	3	0			
F	3	2			
G	3	6			
H	5	4	\quad	B $\mathbf{+ 4}$	E $\mathbf{+ 1 0}$
:---:	:---:				
8	18				
4	13				
6	11				
8	12				
7	10				
7	12				
7	16				
9	14	\quad	A's Cost	A's Next	
:---:	:---:				
0	--				
4	B				
6	B				
8	B				
7	B				
7	B				
7	B				
9	B				

Distance Vector (5)

- Subsequent exchanges; converged

To	B says	E says			
A	4	7			
B	0	3			
C	2	1			
D	4	2			
E	3	0			
F	3	2			
G	3	6			
H	5	4	\quad	B $\mathbf{+ 4}$	E $\mathbf{+ 1 0}$
:---:	:---:				
8	17				
4	13				
6	11				
8	12				
7	10				
7	12				
7	16				
9	14	\quad	A's Cost	A's Next	
:---:	:---:				
0	--				
4	B				
6	B				
8	B				
8	B				
7	B				
7	B				
9	B				

Distance Vector Dynamics

- Adding routes:
- News travels one hop per exchange
- Removing routes
- When a node fails, no more exchanges, other nodes forget
- But partitions (unreachable nodes in divided network) are a problem
- "Count to infinity" scenario

DV Dynamics (2)

- Good news travels quickly, bad news slowly (inferred)

Desired convergence

"Count to infinity" scenario

DV Dynamics (3)

- Various heuristics to address
- e.g., "Split horizon, poison reverse" (Don't send route back to where you learned it from.)
- But none are very effective
- Link state now favored in practice
- Except when very resource-limited

Topic

- How to broadcast a message to all nodes in the network with flooding
- Simple mechanism, but inefficient

Flooding

- Rule used at each node:
- Sends an incoming message on to all other neighbors
- Remember the message so that it is only flood once
- Inefficient because one node may receive multiple copies of message

Flooding (2)

- Consider a flood from A; first reaches B via $A B, E$ via $A E$

Flooding (3)

- Next B floods BC, BE, BF, BG, and E floods EB, EC, ED, EF

Flooding (4)

- C floods CD, CH; D floods DC; F floods FG; G floods GF

Flooding (5)

- H has no-one to flood ... and we're done

Flooding Details

- Remember message (to stop flood) using source and sequence number
- So next message (with higher sequence number) will go through
- To make flooding reliable, use ARQ
- So receiver acknowledges, and sender resends if needed

Topic

- How to compute shortest paths in a distributed network
- The Link-State (LS) approach

Link-State Routing

- One of two approaches to routing
- Trades more computation than distance vector for better dynamics
- Widely used in practice
- Used in Internet/ARPANET from 1979
- Modern networks use OSPF and IS-IS

Link-State Setting

Nodes compute their forwarding table in the same distributed setting as for distance vector:

1. Nodes know only the cost to their neighbors; not the topology
2. Nodes can talk only to their neighbors using messages
3. All nodes run the same algorithm concurrently
4. Nodes/links may fail, messages may be lost

Link-State Algorithm

Proceeds in two phases:

1. Nodes flood topology in the form of link state packets

- Each node learns full topology

2. Each node computes its own forwarding table

- By running Dijkstra (or equivalent)

Phase 1: Topology Dissemination

- Each node floods link state packet (LSP) that describes their portion of the topology

Node E's LSP flooded to A, B, C, D, and F

Seq. \#	
A	10
B	4
C	1
D	2
F	2

Phase 2: Route Computation

- Each node has full topology
- By combining all LSPs
- Each node simply runs Dijkstra
- Some replicated computation, but finds required routes directly
- Compile forwarding table from sink/ source tree
- That's it folks!

Forwarding Table

Source Tree for E (from Dijkstra)

E's Forwarding Table

To	Next
A	C
B	C
C	C
D	D
E	-
F	F
G	F
H	C

Handling Changes

- On change, flood updated LSPs, and re-compute routes
- E.g., nodes adjacent to failed link or node initiate

Handling Changes (2)

- Link failure
- Both nodes notice, send updated LSPs
- Link is removed from topology
- Node failure
- All neighbors notice a link has failed
- Failed node can't update its own LSP
- But it is OK: all links to node removed

Handling Changes (3)

- Addition of a link or node
- Add LSP of new node to topology
- Old LSPs are updated with new link
- Additions are the easy case ...

Link-State Complications

- Things that can go wrong:
- Seq. number reaches max, or is corrupted
- Node crashes and loses seq. number
- Network partitions then heals
- Strategy:
- Include age on LSPs and forget old information that is not refreshed
- Much of the complexity is due to handling corner cases (as usual!)

DV/LS Comparison

Goal	Distance Vector	Link-State
Correctness	Distributed Bellman-Ford	Replicated Dijkstra
Efficient paths	Approx. with shortest paths	Approx. with shortest paths
Fair paths	Approx. with shortest paths	Approx. with shortest paths
Fast convergence	Slow - many exchanges	Fast - flood and compute
Scalability	Excellent - storage/compute	Moderate - storage/compute

