Intro to Project-3

m= (CSE 461 Computer Networks s

Bufferbloat

“Bufferbloat is a cause of high latency in packet-switched networks caused by
excess buffering of packets” - Wikipedia

Bufferbloat can happen anywhere on a network where packets can queue.
Every network has a spot in the path that's naturally slower, and that's where

bufferbloat will rear its ugly head. Typically, this happens at a bottleneck link
where many packets are queued up.

Queues and Latency

Example

TMbps link
1500 byte
packets
Therefore, it
takes 12 ms to
transmit a
packet (write it
to the wire)

=l i
N N
= =
w w

84 ms

e The last packet in the queue has to
wait for all the others to be transmitted
e Thisis where high latency under load
comes from
e Often physical interfaces have queues
thousands of packets deep
e Until recently, Linux defaulted to
a 1000 packet queue on each
interface
e Inthisexample that's up to
12 seconds of latency
e Router ports often target at least
200 ms of buffering

Consider the user experience when the red
packet is important to the the customer
experience (eg DNS request)

Big Buffers and TCP

1 ” “ " " »
Tere

e TCP ‘learns’ the rate the network can support by
probing (increase bandwidth until loss, then back off)
e Deep queues delay the packet loss event causing TCP
to push more packets into the network than it can
deliver

= e

Link

..............

The interaction of TCP
congestion control and
deep buffers can result
in a ‘standing queue’ for
any individual TCP flow
This phenomenon adds
latency to every packet
that flows through the
NIC as long as the TCP
connection is active

In this example, the
blue TCP flow's
congestion algorithm
has settled at a point
that has 19 packets in
the packet queue at all
times

A motivational example...

Not all “speedtests” capture bufferbloat... took a
long time for the networking community to realize
it was a problem!

e Aregular “ping” test, used to measure RTT in
practice, won't fill the buffers!

Let's as a class try it out:

e https://www.waveform.com/tools/bufferbloat

o Loaded latency vs. unloaded latency

o How big is the difference?

LATENCY

Unloaded Download Active Upload Active

TMms | +17ms

| Download

112753

+59 .

1 Upload

6.15 i

https://www.waveform.com/tools/bufferbloat

Real World Initiatives

Active Queue Management (AQM)
e Goal is to use better queue management techniques.
e Leverage ECN (Explicit Congestion Notification) to give fast feedback without causing loss

o ECN allows end-to-end notification of network congestion without droppin%packets.
Unfortunately hard to deploy ECN CC “fairly” with existing CC algos (Reno, Cubic)

Oét works so much more responsively (aka better) it tends to takeover throughput from legacy
TCP!

L4S “Low-latency, low-loss, scalable throughput” initiative at IETF

e One solution is to mandate a split at bottlenecks, two queues with independent behavior
e Required in latest cable modem standards

One AQM Technique: FO_CODEL

e |nitiatives to add flow-independent queues to bottleneck routers...
o like L4S to an extreme...
o Each flow gets its own queue, and it's the router’s job to make them all fair!
o Attempts to estimate bottleneck and not queue any more than necessary to fill the pipe
m Similar big idea to BBR
e Available in all modern Linux distros (kernel > 3.16)
o Default in some
e Default in OpenWRT
o Used as the basis for some commercial routers too (SpaceX Starlink is a prominent example)

e Relatively resource intensive though, so not feasible on “core” routers yet

TCP - detecting, reacting to loss

e Loss indicated by timeout

o cwndissetto 1.
o Window then grows exponentially (as in slow start) to threshold, then grows linearly

e Loss indicated by 3 duplicate ACKs: TCP Reno

o Dup Acks indicate that network is capable of delivering some segments
o cwnd is cut in half window and then grows linearly

e TCP Tahoe always set cwnd to 1. (Timeout or 3 duplicate acks)

What is a Duplicate ACK

Most packet analyzers will indicate a duplicate ‘

acknowledgment condition when two D

Data 1

ACK packets are detected with the same .;-————'/_____‘m’//
Ack 1,2

ACK numbers. Ry

Data 3

ek Data 4
Duplicate ACK with ,_—-————""""/

Selective ACK for —Ack12] |4 .

Packet 4 Data 3 (Retrans

TCP: switching from slow start to CA
Q: when should the

exponential
. . 4 —
increase switch to 1 TCP Reno
linear? .1 | |
8 10— -
A: when cwnd gets SE lssthesh A
to 1/2 of its value se | /N
before timeout. - P i icaiich
S , TCP Tahoe
Implementation: S 0 S A S R O AR
o Variable ssthresh Transmission round

+ on loss event, ssthresh
is set to 1/2 of cwnd just
before loss event

Bufferbloat aware transport: BBR

e Different type of solution than AQM
o Operates only on end hosts

e Developed at Google in 2016 for YouTube traffic.

Google started from scratch, using a completely new paradigm: to decide how fast to
send data over the network, BBR considers how fast the network is delivering data.

e For a given network connection, it uses recent measurements of the network's delivery
rate and round-trip time to build an explicit model that includes both the maximum
recent bandwidth available to that connection, and its minimum recent round-trip
delay. BBR then uses this model to control both how fast it sends data and the
maximum amount of data it's willing to allow in the network at any time.

Project 3 - Goal

e Simulate bufferbloat problem.
e See the worse performance when queue size is larger
e See the difference between TCP Reno and TCP BBR.

Experiment Setup

e Long-lived TCP flow from h1 to h2
o Simulate background traffic
e Back-to-back ping from h1 to h2
o Measure RTT
e Spawn a webserver on h1 and
periodically fetch a page

o Simulate more important load
o Measure time

e Plot time series of RTT and
number of queued packets.

h1 to h2
RTTmin=20ms

Router
1.5Mb/s 1Gb/s
< h1

Q=150kB (100 pkt)

e Run the experiment with

o Q=20 and Q=100
o Reno and BBR
o 4 experiments total

Setup

° Use Mininet VM (same as Project 2)
e Get the starter code and install dependencies

cd ~

wget
https://courses.cs.washington.edu/courses/cse461/23wi/projects/project3/resources/project3.zip
unzip project3.zip

sudo apt-get update

sudo apt install python3-pip

sudo python3 -m pip install mininet matplotlib

Starter Code

e run.sh

o Run the entire experiment
m Run bufferbloat.py on q=20 and g=100
m Generate latency and queue length graphs

e bufferbloat.py

o Complete the TODOs
m Setup the mininet topology and the experiment
m Write shell commands to do the measurements

Long-lived TCP Flow

Starter code sets up iperf server on h2

Goal: start iperf client on h1, connect to h2 T
o Should be “long-lasting”, i.e. for time specified by - e W
--time parameter @M " e @

i Q=150kB (100 pkt
How do | connect to a certain IP or make B

the connection long-lasting?

o man pages are your friend!
o type ‘man iperf in a Linux terminal

Ping Train

e Goal: Start “ping train” between h1 and h2
o Pings should occur at 10 per second interval

o Should run for entire experiment
h1 to h2
RTTmin=20ms

e How do | specify the ping interval and how

. i Router
long the ping train runs? 1.5Mbls 1Gbls
o man pages are your friend! [) @

o type ‘man ping in a Linux terminal
P PIng Q=150kB (100 pkt)

e Write the RTTs recorded from "ping to
{args.dir}/ping.txt

o See starter code comments for more detail

Download Webpage with curl

e Starter code spawns webserver on hi

e Goal: Use curl to measure fetch time to hi to h2
RTTmin=20ms
download webpage from h1 -
R
o Starter code has hint on formatting curl command e e W e
o Make sure ‘curl doesn’t output an error @47 <) @

m Errors report very small latency Q=150kB (

e No need to plot fetch times; just need to
report average fetch time for each
experiment.

Plotting

Starter code contains scripts for plotting,
‘plot_queue.py, plot_ping.py

o Expects queue occupancy in $dir/q.txt, ping
latency in $dir/ping.txt
o Plots are useful for debugging!

Part 3, run same experiments with TCP
BBR instead of TCP Reno

o How do you expect the graph outputs to differ?

Q=20

TCP window (cwnd) timeseries

seconds

Q=100

TCP congestion window (cwnd) timeseries

seconds

