
Intro to Project-3
CSE 461 Computer Networks

Bufferbloat
“Bufferbloat is a cause of high latency in packet-switched networks caused by
excess buffering of packets” – Wikipedia

Bufferbloat can happen anywhere on a network where packets can queue.
Every network has a spot in the path that’s naturally slower, and that’s where
bufferbloat will rear its ugly head. Typically, this happens at a bottleneck link
where many packets are queued up.

A motivational example…
Not all “speedtests” capture bufferbloat… took a

long time for the networking community to realize

it was a problem!

● A regular “ping” test, used to measure RTT in

practice, won’t fill the buffers!

Let’s as a class try it out:

● https://www.waveform.com/tools/bufferbloat

○ Loaded latency vs. unloaded latency

○ How big is the difference?

https://www.waveform.com/tools/bufferbloat

Real World Initiatives
Active Queue Management (AQM)

● Goal is to use better queue management techniques.

● Leverage ECN (Explicit Congestion Notification) to give fast feedback without causing loss

○ ECN allows end-to-end notification of network congestion without dropping packets.
Unfortunately hard to deploy ECN CC “fairly” with existing CC algos (Reno, Cubic)

○ It works so much more responsively (aka better) it tends to takeover throughput from legacy
TCP!

L4S “Low-latency, low-loss, scalable throughput” initiative at IETF

● One solution is to mandate a split at bottlenecks, two queues with independent behavior
● Required in latest cable modem standards

One AQM Technique: FQ_CODEL
● Initiatives to add flow-independent queues to bottleneck routers…

○ like L4S to an extreme…

○ Each flow gets its own queue, and it’s the router’s job to make them all fair!

○ Attempts to estimate bottleneck and not queue any more than necessary to fill the pipe

■ Similar big idea to BBR

● Available in all modern Linux distros (kernel > 3.16)

○ Default in some

● Default in OpenWRT

○ Used as the basis for some commercial routers too (SpaceX Starlink is a prominent example)

● Relatively resource intensive though, so not feasible on “core” routers yet

TCP - detecting, reacting to loss
● Loss indicated by timeout

○ cwnd is set to 1.
○ Window then grows exponentially (as in slow start) to threshold, then grows linearly

● Loss indicated by 3 duplicate ACKs: TCP Reno
○ Dup Acks indicate that network is capable of delivering some segments
○ cwnd is cut in half window and then grows linearly

● TCP Tahoe always set cwnd to 1. (Timeout or 3 duplicate acks)

What is a Duplicate ACK
Most packet analyzers will indicate a duplicate

acknowledgment condition when two

ACK packets are detected with the same

ACK numbers.

Bufferbloat aware transport: BBR
● Different type of solution than AQM

○ Operates only on end hosts
● Developed at Google in 2016 for YouTube traffic.
● Google started from scratch, using a completely new paradigm: to decide how fast to

send data over the network, BBR considers how fast the network is delivering data.
● For a given network connection, it uses recent measurements of the network's delivery

rate and round-trip time to build an explicit model that includes both the maximum
recent bandwidth available to that connection, and its minimum recent round-trip
delay. BBR then uses this model to control both how fast it sends data and the
maximum amount of data it's willing to allow in the network at any time.

Project 3 – Goal
● Simulate bufferbloat problem.
● See the worse performance when queue size is larger
● See the difference between TCP Reno and TCP BBR.

Experiment Setup

Setup
● Use Mininet VM (same as Project 2)
● Get the starter code and install dependencies

cd ~

wget

https://courses.cs.washington.edu/courses/cse461/23wi/projects/project3/resources/project3.zip

unzip project3.zip

sudo apt-get update

sudo apt install python3-pip

sudo python3 -m pip install mininet matplotlib

Starter Code

Long-lived TCP Flow

Ping Train

Download Webpage with curl

Plotting

