Computer Networks

Wireshark and HW-2 Autumn 2023

Administrivia

- Project-1 is due October 25th
- HW1 is due October 18th

Wireshark

- Download : <u>https://www.wireshark.org/download.html</u>
- User's guide: <u>https://www.wireshark.org/docs/wsug_html_chunked/</u>

What is Wireshark

It's a tool that captures and analyzes packets sent over the network

- Very commonly used in Network Forensics
- Captures all packets through a network interface (ethernet, WiFi)
- Analyzes packets and decodes raw data if the protocol is recognized
- Filters packets based on user's input

Wireshark Interface

Wireshark Interface

41	he Wir	eshark N	letwor	k Analyzer	Ş.						
File	Edit	View	Go	Capture	Analyze	Statistics	Telephony	Wireless	Tools	Help	
		•	015	XC	9 @ @	· 🕸 🕜	ـ	\oplus \odot $($	Q. III.		
Ap	oply a di	splay filte	er <(Ctrl-/>							📑 🔹 E:
	_										
	We	lcome t	o Wire	eshark							
	Cap	oture									
	usin	g this filt	er: 🚺	Enter a ca	apture filter						
	Virtu	alBox H	ost-Or	ly Networ	k						
	Wi-F	ï				harnen	~~~				
	VMv	vare Net	work A	dapter VN	Indes		1				
		rnet 2									
			work A	dapter VN	Inet1	Л					
	Ethe	rnet									

Wireshark Interface

	R 🖉 🧣 🕈 🖀	₹ ± 🛄 @ @	III	
Apply a display filter <	Ctrl-/>			
Time	Source	Destination	Protocol	Length Info
1 0.000000	Sagemcom_6e:fd:f9	Spanning-tree-(for_		60 Conf. Root = 32768/0/b0:98:2b:6e:fd:f9 Cost = 0 Port = 0x8004
2 1.983698	Sagemcom_6e:fd:f9	Spanning-tree-(for		60 Conf. Root = 32768/0/b0:98:2b:6e:fd:f9 Cost = 0 Port = 0x8004
3 2.614162	192.168.0.10	172.217.21.142	UDP	1392 57392 → 443 Len=1350
4 2.614218	192.168.0.10	172.217.21.142	UDP	247 57392 → 443 Len=205
5 2.648696	172.217.21.142	192.168.0.10	UDP	68 443 → 57392 Len=26
6 2.686027 7 2.686028	172.217.21.142	192.168.0.10 192.168.0.10	UDP	822 443 → 57392 Len=780 214 443 → 57392 Len=72
8 2.696226	192.168.0.10	172.217.21.142	UDP	214 443 + 5/392 Lefn#1/2 75 57392 + 443 Lefn#33
9 2.710148	192.168.0.10	193.162.153.164	DNS	75 5/52 - 445 Lemiss 78 Standard query 0xabc8 A consent.google.com
10 2.728137	193.162.153.164	192.168.0.10	DNS	Je Standard query esponse 0xabce A consent.google.com A 216.58.207.206 NS ns4.google.com NS ns2.google.com NS ns1.google.com NS
11 2.732066	192,168,0,10	216.58.207.206	TCP	66 51317 + 443 [SYN] Seque Win-64240 Lene MSS=1466 WS=256 SACK PERM-1
12 2.758265	216.58.207.206	192.168.0.10	TCP	66 443 + 51317 [SYN, ACK] Seque Acks1 Win=65535 Len=0 MSS=1430 SACK_PERM=1 WS=256
13 2.758663	192.168.0.10	216.58.207.206	TCP	54 51317 + 443 [ACK] Seg=1 Ack=1 Win=131328 Len=0
14 2.759175	192.168.0.10	216.58.207.206		571 Client Hello
15 2.784762	216.58.207.206	192.168.0.10	TCP	60 443 → 51317 [ACK] Seg=1 Ack=518 Win=66816 Len=0
16 2.794581	216.58.207.206	192.168.0.10	TLSv1	1484 Server Hello, Change Cipher Spec
	tocol, Src Port: 443, [Dat Port: 57392		
	tocol, sre port: 443, t	DET POPT: 57392		
Data (26 bytes) 00 7c 8b ca 00 6e 10 00 36 00 00 40 20 00 6a 1b e0	1e b0 98 2b 6e fd f9 06 D0 3c 11 bb 1d ac d9 15 D0 00 22 11 bb 1d ac d9 15 D0 00 22 11 cb 1d ac d9 15 D4 c9 a6 c7 cc cd 3c dc	00 45 80 ···n···+n 8e c0 a5 -6-⊕·c ···0·* g0 ba 72 59 ···0·* g0	\ rY	
ata (26 bytes) 7c 8b ca 00 6e 00 36 00 00 40 00 0a 01 bb e0 90 08 35 dc aa	1e b0 98 2b 6e fd f9 08 00 3c 11 bb 1d ac d9 15 30 00 22 21 67 55 5c b6	60 45 80 [\ rY	
 Arta (26 bytes) 7c 8b ca 00 6e 00 36 00 00 40 00 0a 01 bb e0 90 e8 35 dc aa 	1e b0 98 2b 6e fd f9 08 00 3c 11 bb 1d ac d9 15 30 00 22 21 67 55 5c b6	60 45 80 [\ rY	

Wireshack Filtering

- If you want to capture all TCP packets, write TCP in the filter. Same for UDP
- You can also track the packets going to a particular host using tcp contains "host"
- You can track packets going and coming back to a particular IP address.

Wireshark filtering

- Let's try to hack password of a not secure website. <u>http://vbsca.ca/login/login.asp</u>
- This is very basic of Wireshark. It is capable of a lot more.
- Additional links:

https://www.wireshark.org/docs/

https://www.wireshark.org/docs/man-pages/wireshark-filter.html

Clock Recovery

- Um, how many zeros was that?
 - Receiver needs frequent signal transitions to decode bits

- Several possible designs
 - E.g., Manchester coding and scrambling (§2.5.1)

Clock Recovery – 4B/5B

- Map every 4 data bits into 5 code bits without long runs of zeros
 - 0000 → 11110, 0001 → 01001, 1110 → 11100, ... 1111 → 11101
 - Has at most 3 zeros in a row
 - Also invert signal level on a 1 to break up long runs of 1s (called NRZI)

Clock Recovery -4B/5B(2)

- 4B/5B code for reference:
 - 0000→11110, 0001→01001, 1110→11100, ... 1111→11101
- Message bits: 1111 0000 0001 Coded Bits:

Signal:

Clock Recovery – 4B/5B (3)

- 4B/5B code for reference:
 - 0000→11110, 0001→01001, 1110→11100, ... 1111→11101
- Message bits: 1111 0000 0001 Coded Bits: 1 1 1 0 1 1 1 1 0 0 1 (

R.W. Hamming (1915-1998)

- Much early work on codes:
 - "Error Detecting and Error Correcting Codes", BSTJ, 1950
- See also:
 - "You and Your Research", 1986

Source: IEEE GHN, © 2009 IEEE

Hamming Distance

- Distance is the number of bit flips needed to change D_1 to D_2
- <u>Hamming distance</u> of a coding is the minimum error distance between any pair of codewords (bit-strings) that cannot be detected

Hamming Distance (2)

- Error detection:
 - For a coding of distance d+1, up to d errors will always be detected
- Error correction:
 - For a coding of distance 2d+1, up to d errors can always be corrected by mapping to the closest valid codeword

Why Error Correction is Hard

- If we had reliable check bits we could use them to narrow down the position of the error
 - Then correction would be easy
- But error could be in the check bits as well as the data bits!
 - Data might even be correct

Hamming Code

- Gives a method for constructing a code with a distance of 3
 - Uses $n = 2^{k} k 1$, e.g., n=4, k=3
 - Put check bits in positions p that are powers of 2, starting with position 1
 - Check bit in position p is parity of positions whose p-th LSBit is same as p's
- Plus an easy way to correct [soon]

Hamming Code (2)

- Example: data=0101, 3 check bits
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7 (LSB is 1)
 - Check 2 covers positions 2, 3, 6, 7 (2nd LSB is 1)
 - Check 4 covers positions 4, 5, 6, 7 (3rd LSB is 1)

Hamming Code (3)

- Example: data=0101, 3 check bits
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7
 - Check 2 covers positions 2, 3, 6, 7
 - Check 4 covers positions 4, 5, 6, 7

 $p_1 = 0 + 1 + 1 = 0$, $p_2 = 0 + 0 + 1 = 1$, $p_4 = 1 + 0 + 1 = 0$

Hamming Code (4)

• To decode:

- Recompute check bits (with parity sum including the check bit)
- Arrange as a binary number
- Value (syndrome) tells error position
- Value of zero means no error
- Otherwise, flip bit to correct

```
Hamming Code (5)

• Example, continued

\rightarrow 0 1 0 0 1 0 1

1 2 3 4 5 6 7

p_1 = p_2 = p_4 =

Syndrome =

Data =
```

```
Hamming Code (6)
```

```
• Example, continued

 \xrightarrow{\longrightarrow} \underbrace{0}_{1} \underbrace{1}_{2} \underbrace{0}_{3} \underbrace{0}_{4} \underbrace{1}_{5} \underbrace{0}_{7} \underbrace{1}_{1} \underbrace{0}_{2} \underbrace{0}_{4} \underbrace{1}_{5} \underbrace{0}_{7} \underbrace{0}_{1} \underbrace{0}_{1}
```

 $p_1 = 0+0+1+1 = 0, p_2 = 1+0+0+1 = 0, p_4 = 0+1+0+1 = 0$

Syndrome = 000, no error Data = 0 1 0 1

```
Hamming Code (7)

• Example, continued

\rightarrow 0 1 0 0 1 1 1

1 2 3 4 5 6 7

p_1 = p_2 =

p_4 =

Syndrome =

Data =
```

```
Hamming Code (8)
```

• Example, continued $\rightarrow 0 1 0 0 1 1 1$ 1 2 3 4 5 6 7 $p_1 = 0 + 0 + 1 + 1 = 0, p_2 = 1 + 0 + 1 + 1 = 1,$

 $p_4 = 0 + 1 + 1 + 1 = 1$

Syndrome = 1 1 0, flip position 6 Data = 0 1 0 1 (correct after flip!)

Hamming Code (3)

- Example: bad message 0100111
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7
 - Check 2 covers positions 2, 3, 6, 7
 - Check 4 covers positions 4, 5, 6, 7

 $p_1 = 0 + 0 + 1 + 1 = 0$, $p_2 = 1 + 0 + 1 + 1 = 1$, $p_4 = 0 + 1 + 1 + 1 = 1$

Hamming Code (3)

- Example: bad message 0100111
 - 7 bit code, check bit positions 1, 2, 4
 - Check 1 covers positions 1, 3, 5, 7

 - Check 2 covers positions 2, 3, 6, 7
 Check 4 covers positions 4, 5, 6, 7

 $p_1 = 0 + 0 + 1 + 1 = 0$, $p_2 = 1 + 0 + 1 + 1 = 1$, $p_4 = 0 + 1 + 1 + 1 = 1$

Suppose the following message has been sent:

466f726f757a616e

What is the internet checksum of this message? Please give your answer in hex and with lowercase letters and with no leading 0x

Let us see how to generate the CRC bits that are appended to the original data. Given that the data stream is 10110011 and the generator polynomial is x^4+x+1

HW2

Step 1: Append the R number of **0** bits to the end of the data stream, where R is the highest degree of the polynomial. In our case, the value of R is **4** as the highest degree of generator polynomial function is **4** ($x^4 + x + 1$). So, our dividend data will be 10110011 + 0000 = 101100110000. Now, we will perform the division by dividing the input stream with the generator polynomial to generate CRC bits. The divisor in our case will be 10011 (i.e., $1.x^4 + 0.x^3 + 0.x^2 + 1.x + 1$).

Thank You