## Computer Networks

Wireshark and HW-2
Autumn 2023

## Administrivia

- Project-1 is due October 25 th
- HW1 is due October 18th


## Wireshark

- Download : https://www.wireshark.org/download.html
- User's guide: https://www.wireshark.org/docs/wsug_html_chunked/


## What is Wireshark

It's a tool that captures and analyzes packets sent over the network

- Very commonly used in Network Forensics
- Captures all packets through a network interface (ethernet, WiFi)
- Analyzes packets and decodes raw data if the protocol is recognized
- Filters packets based on user's input


## Wireshark Interface



## Wireshark Interface



## Wireshark Interface



## Wireshack Filtering

- If you want to capture all TCP packets, write TCP in the filter. Same for UDP
- You can also track the packets going to a particular host using tcp contains "host"
- You can track packets going and coming back to a particular IP address.


## Wireshark filtering

- Let's try to hack password of a not secure website.
- http://vbsca.ca/login/login.asp
- This is very basic of Wireshark. It is capable of a lot more.
- Additional links:
https://www.wireshark.org/docs/
https://www.wireshark.org/docs/man-pages/wireshark-filter.html


## Clock Recovery

- Um, how many zeros was that?
- Receiver needs frequent signal transitions to decode bits
$1000000000 \ldots 0$
- Several possible designs
- E.g., Manchester coding and scrambling (§2.5.1)


## Clock Recovery - 4B/5B

- Map every 4 data bits into 5 code bits without long runs of zeros
- $0000 \rightarrow$ 11110, $0001 \rightarrow$ 01001, $1110 \rightarrow$ 11100, ... $1111 \rightarrow 11101$
- Has at most 3 zeros in a row
- Also invert signal level on a 1 to break up long runs of 1 s (called NRZI)


## Clock Recovery - 4B/5B (2)

-4B/5B code for reference:

- 0000 $\rightarrow$ 11110, $0001 \rightarrow 01001,1110 \rightarrow 11100, \ldots$ $1111 \rightarrow 11101$
- Message bits: 111100000001

Coded Bits:
Signal:

## Clock Recovery - 4B/5B (3)

-4B/5B code for reference:

- 0000 $\rightarrow$ 11110, $0001 \rightarrow 01001,1110 \rightarrow 11100, \ldots$ $1111 \rightarrow 11101$
- Message bits: 111100000001

Coded Bits: $1 \begin{array}{lllllllllllllll} & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 1\end{array}$
Signal:


## R.W. Hamming (1915-1998)

- Much early work on codes:
- "Error Detecting and Error Correcting Codes", BSTJ, 1950
- See also:
- "You and Your Research", 1986


Source: IEEE GHN, © 2009 IEEE

Hamming Distance

- Distance is the number of bit flips needed to change $D_{1}$ to $D_{2}$
- Hamming distance of a coding is the minimum error distance between any pair of codewords (bit-strings) that cannot be detected


## Hamming Distance (2)

- Error detection:
- For a coding of distance $d+1$, up to $d$ errors will always be detected
- Error correction:
- For a coding of distance $2 d+1$, up to $d$ errors can always be corrected by mapping to the closest valid codeword


## Why Error Correction is Hard

- If we had reliable check bits we could use them to narrow down the position of the error
- Then correction would be easy
- But error could be in the check bits as well as the data bits!
- Data might even be correct


## Hamming Code

- Gives a method for constructing a code with a distance of 3
- Uses $n=2^{k}-k-1$, e.g., $n=4, k=3$
- Put check bits in positions $p$ that are powers of 2, starting with position 1
- Check bit in position $p$ is parity of positions whose $p$-th LSBit is same as p's
- Plus an easy way to correct [soon]


## Hamming Code (2)

- Example: data=0101, 3 check bits
- 7 bit code, check bit positions 1, 2, 4
- Check 1 covers positions $1,3,5,7$ (LSB is 1 )
- Check 2 covers positions 2, 3, 6, 7 ( $2^{\text {nd }}$ LSB is 1 )
- Check 4 covers positions 4, 5, 6, 7 ( $3^{\text {rd }}$ LSB is 1 )

$$
\overline{1} 2 \overline{3} \overline{4} \overline{6} \overline{7}
$$

## Hamming Code (3)

- Example: data=0101, 3 check bits
- 7 bit code, check bit positions 1, 2, 4
- Check 1 covers positions 1, 3, 5, 7
- Check 2 covers positions 2, 3, 6, 7
- Check 4 covers positions 4, 5, 6, 7

$$
\begin{gathered}
\frac{0}{1} \frac{1}{2} \\
0
\end{gathered} \frac{0}{3}
$$

## Hamming Code (4)

- To decode:
- Recompute check bits (with parity sum including the check bit)
- Arrange as a binary number
- Value (syndrome) tells error position
- Value of zero means no error
- Otherwise, flip bit to correct


## Hamming Code (5)

- Example, continued

$p_{1}=\quad p_{2}=$
$\mathrm{p}_{4}=$
Syndrome = Data $=$


## Hamming Code (6)

- Example, continued

$p_{1}=0+0+1+1=0, p_{2}=1+0+0+1=0$,
$\mathrm{p}_{4}=0+1+0+1=0$
Syndrome = 000, no error Data = 0101


## Hamming Code (7)

- Example, continued

$p_{1}=$
$p_{2}=$
$\mathrm{p}_{4}=$
Syndrome = Data $=$


## Hamming Code (8)

- Example, continued

$p_{1}=0+0+1+1=0, p_{2}=1+0+1+1=1$,
$\mathrm{p}_{4}=0+1+1+1=1$
Syndrome = 110 , flip position 6 Data = 0101 (correct after flip!)


## Hamming Code (3)

- Example: bad message 0100111
- 7 bit code, check bit positions 1, 2, 4
- Check 1 covers positions 1, 3, 5, 7
- Check 2 covers positions 2, 3, 6, 7
- Check 4 covers positions 4, 5, 6, 7

$$
\begin{gathered}
0 \\
0
\end{gathered} 1
$$

## Hamming Code (3)

- Example: bad message 0100111
- 7 bit code, check bit positions 1, 2, 4
- Check 1 covers positions 1, 3, 5, 7
- Check 2 covers positions 2, 3,6, 7
- Check 4 covers positions 4, 5, 6, 7

$$
\begin{gathered}
0 \\
1
\end{gathered} 1
$$

## HW-2

Suppose the following message has been sent:
466f726f757a616e

What is the internet checksum of this message? Please give your answer in hex and with lowercase letters and with no leading 0x

## HW2

Let us see how to generate the CRC bits that are appended to the original data. Given that the data stream is 10110011 and the generator polynomial is
$x^{\wedge} 4+x+1$

## HW2

Step 1: Append the $R$ number of 0 bits to the end of the data stream, where $R$ is the highest degree of the polynomial. In our case, the value of $R$ is 4 as the highest degree of generator polynomial function is $4\left(x^{4}+x+1\right)$. So, our dividend data will be $10110011+0000=101100110000$. Now, we will perform the division by dividing the input stream with the generator polynomial to generate CRC bits. The divisor in our case will be 10011 (i.e., $1 . x^{4}+0 . x^{3}+0 . x^{2}+1 . x+1$ ).


Thank You

