
Computer Networks
 Socket API, HW 1 fundamentals

Autumn 2023

Administrivia - Course Structure
●

○
■
■
■

○
■
■

○
○

●
○
○
○

3 group projects
Build a client and server application
Practice with Software-Defined Networking
Experimenting to learn about latency in real-world networks (Bufferbloat)

About 5 homework assignments (Gradescope)
Detailed practice with the concepts discussed in textbook & lecture
Conceptual overview

In-person Midterm & Final Exam
Occasional “surprise” quizzes

Intro to labs (helpful hints!) + networking software
Re-explaining and clarifying conceptual topics (e.g. various protocols)
Practice with mechanics (e.g. calculations, algorithms, etc.)

Assignments

Quiz Sections

Administrivia
●

○
○

■
■

Can be done in groups of 2-3
Can be done in any language (recommend Java / Python)

Future labs will be in Python
Intent is to allow you to become familiar with some languages Socket API!

Project 1 is will be out tomorrow!

Socket API & Project 1

Network Stack - OSI Model vs TCP/IP Model

Network Stack - Packet Encapsulation

Network-Application Interface
● Defines the operations that programs

(apps) call to use the network
○ Application Layer API
○ Defined by the Operating System

■ These operations are then exposed
through a particular programming
language

■ All major Operating Systems support
the Socket API

○ Allows two computer programs potentially
running on different machines to talk

○ Hides the other layers of the network

host

app
app

hostnetwork

● Part 1: Simple Client
○ Send requests to attu server
○ Wait for a reply
○ Extract the information from the reply
○ Continue…

● Part 2: Simple Server
○ Server handles the Client requests
○ Multi-threaded

● This is the basis for many apps!
○ File transfer: send name, get file
○ Web browsing: send URL, get page
○ Echo: send message, get it back

Project 1

host

ServerClient

host

network

Socket API
● Simple application-layer abstractions (APIs) to use the network

○ The network service API used to write all Internet applications
○ Part of all major OSes and languages; originally Berkeley (Unix) ~1983

● Two kinds of sockets
○ Streams (TCP): reliably send a stream of bytes

■ Detects packet loss with timeouts (uses adaptive timeout protocol)
■ Uses flow control: similar to selective repeat

○ Datagrams (UDP): unreliably send separate messages

Ports
● Sockets let apps attach to the local network at different ports

○ Ports are used by OS to distinguish services / apps all using the same physical connection
to the internet

○ Think of ports like apartment numbers, allowing mail sent to a shared building address
(IP) to be sorted into the correct destination unit (application)

Socket
Port 1

Socket
Port 2

app app

Socket API Operations

https://docs.oracle.com/javase/8/docs/api/java/net/Socket.html
https://docs.oracle.com/javase/8/docs/api/java/net/ServerSocket.html

Primitive Meaning

SOCKET Create a new communication endpoint
BIND Associate a local address (port) with a socket

LISTEN Announce willingness to accept connections; (give
queue size)

ACCEPT Passively establish an incoming connection
CONNECT Actively attempt to establish a connection
SEND Send some data over the connection
RECEIVE Receive some data from the connection
CLOSE Release the connection

Using TCP Sockets
Client (host 1) Time Server (host 2)

request

reply

disconnect
4

1 1

2

3

4

connect

Using TCP Sockets (Continued)
Client (host 1) Time Server (host 2)

5: connect*

1: socket

9: send

6: recv*
7: send
8: recv*

11: close

request

reply

disconnect

connect

*= call blocks

1: socket
2: (bind)
3: (listen)
4: accept*

10: recv*

12: close

Using UDP Sockets
Client (host 1) Time Server (host 2)

5: connect*

1: socket

9: sendto

6: recvfrom*
7: sendto
8: recvfrom*

11: close

request

reply

disconnect

connect

*= call blocks

1: socket
2: (bind)
3: (listen)
4: accept*

10: recvfrom*

12: close

Client Program Outline

socket() // make socket
getaddrinfo() // server and port name

 // www.example.com:80
connect() // connect to server

send()
recv()
…
close()

// send request
// await reply [block]

 // do something with
data!

 // done, disconnect

Server Program Outline

socket() // make socket

getaddrinfo() // for port on this host
// associate port with socket

// prepare to accept connections

// wait for a connection [block]

bind()

listen()

accept()

…

recv()

…
send()

close()

// wait for request [block]

// send the reply

// eventually disconnect

Python Examples with socket
● Server

● Python socket documentation
● UDP socket example
● socketserver (a little overkill)

listener = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
listener.bind(server_address)

while True:
 try:
 connection, client_addr = listener.accept()
 try:
 connection.recv(n_bytes)
 finally:
 connection.close()
 except:
 listener.close()

socket = socket.socket(socket.AF_INET,
 socket.SOCK_STREAM)
socket.connect(server_address)
socket.sendto(message, server_address)
socket.close();

● Client

Java Examples with Socket & ServerSocket

• http://cs.lmu.edu/~ray/notes/javanetexamples/
• https://docs.oracle.com/javase/tutorial/net

working/datagrams/clientServer.html
• https://docs.oracle.com/javase/tutorial/net

working/sockets/index.html

ServerSocket listener = new
ServerSocket(9090); try {

while (true) {
Socket socket = listener.accept();
try {

socket.getInputStream();
} finally {

socket.close();
}

}
}
finally {

listener.close();
}

Socket socket = new Socket(server, 9090);
out =

new PrintWriter(socket.getOutputStream(), true);
socket.close();

● Server ● Client

HW1 Fundamentals

Traceroute
● We want to find network path from our system to a given remote host
● Core mechanism: Time-To-Live(TTL)

○ TTL defines the number of hops a packet will travel through until it is dropped
■ TTL is decremented every hop
■ Once TTL is 0 then the packet is dropped and a report is sent to the source

Local
Host

. . .

Remote
Host

Resources:
● http://www.exit109.com/~jeremy/news/providers/traceroute.html
● https://serverfault.com/questions/6403/what-do-the-three-columns-in-traceroute-output-mean

● Traceroute sends out three packets per TTL increment
○ To have 3 trials of data for each hop distance

● Each data point corresponds to the total RTT time

Traceroute

. . .

Local
Host

1 hop 2 hops
3 hops N-1 hops

N hops

Remote
Host

Using Traceroute

Latency Stuff

Bandwidth
● Bandwidth (data rate): The number of

bits that can be transmitted over a
period of time

○ Units of bits per second (bps)
○ Confusingly also used to refer to the

frequency range of a signal
■ In this case the units are given as hertz

(Hz)
● Throughput: The measured

performance of a system
○ Units of bits per second (bps)

● Bandwidth is a pipe and throughput is the
water

Bandwidth & Transmission Time
Transmission time = Size of data / Bandwidth

● Transmission time of 1 bit of data at a bandwidth of 1 Mbps?
○ 1 bit / 1,000,000 bps = 1/1,000,000 seconds = 1 microsecond

● Transmission time of 1 bit of data at a bandwidth of 2 Mbps?
○ 1 bit / 2,000,000 bps = 1/2,000,000 seconds = 0.5 microseconds

● Latency: Total time for a message to arrive on
a network

○ Round trip time (RTT) is the latency for travel from
source to destination to source

● Latency = Propagation + Transmit + Queue
○ Propagation = Distance / “Speed Of Light”

■ How long it takes for information to travel a
distance from source to destination

■ Speed varies by medium
○ Transmit = Size / Bandwidth

■ How long it takes for information to be put
onto the wire before travelling

○ Queue time
■ How long data has to wait until it’s their turn

to be transmitted

Latency

Bandwidth-Delay Product
● Product between bandwidth and

propagation delay
○ Units in bits (bps * s = b)

● Propagation delay is either one
way latency or RTT

○ Usually RTT

● Conceptually defines the maximum
amount of data that can be
“in-flight” at a given time

○ think the amount of water in a pipe

Practice Exercises

Exercise 1
Suppose we have a network link with a bandwidth of 10 Mbps. We want to
send a 100 KB file to a friend somewhere else in the network. The RTT from
us to our friend is 20 ms. How long does it take for the entire file to be
delivered?

● Transmit time = 100 KB / 10 Mbps = 100,000 B / 10 Mbps

 = 800,000 b / 10,000,000 bps = 0.08 seconds = 80 ms

● At t=80ms, the final bit of data is transmitted onto the wire.
○ This bit still needs to actually travel to the destination (propagation delay)

● At t=90ms, the final bit of data arrives at the destination

Exercise 2
Consider a point to point link 50 km in length. Suppose the propagation
speed is 2 * 108 m/s. At what bandwidth in Mbps would the propagation delay
equal the transmit delay for 100 B packets?

● Propagation delay = Distance / Speed Of Light (varies by medium)
○ = 50 * 103 m / (2 * 108 m/s) = .00025 seconds = 250 microseconds

● Transmit = Size / Bandwidth
○ 250 microseconds = 100 B / x Mbps (solve for X)
○ 100 * 8 = 800 bits -> 800 bits / 250 μs = 3.2 Mbps

What about for 512 byte packets?

○ 512 * 8 bits / 250 μs = 16.4 Mbps

Suppose a 128-kbps point-to-point link is set up between Earth and a SpaceX
colony on Mars. The distance from Earth to Mars (when they are closest
together) is approximately 55 Gm, and data travels over the link at the speed
of light (3 * 108 m/s)

● Calculate the minimum RTT for the link.
● Calculate the delay x bandwidth product for the link.
● Say your aunt Betty takes a selfie on Olympus Mons, and sends a 5 MB

picture to you on Earth. How quickly after the picture is taken can you
receive the image from Betty?

Exercise 3

Suppose a 128-kbps point-to-point link is set up between Earth and a SpaceX colony
on Mars. The distance from Earth to Mars (when they are closest together) is
approximately 55 Gm, and data travels over the link at the speed of light (3 * 108 m/s)

● Calculate the minimum RTT for the link.
○ RTT = 2 * Propagation delay = 2 * 55 * 109 m / (3 * 108 m/s) = 2 * 184 = 368 seconds

● Calculate the delay x bandwidth product for the link.
○ delay x bandwidth = 368 seconds * (128 * 103 bps) = 5.888 MB

● Say your aunt Betty takes a selfie on Olympus Mons, and sends a 5 MB picture to
you on Earth. How quickly after the picture is taken can you receive the image
from Betty?

○ Transmit delay for 5 MB = 40,000,000 bits / (128 * 103 bps) = 312.5 seconds
○ Total time = transmit delay + propagation delay = 312.5 + 184 = 496.5 seconds = about 9 minutes

Exercise 3

Thanks for coming!

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th
Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey

