DNS Security Risks
Section 0x02
Joke/Cool thing

- traceroute 216.81.59.173
- https://www.youtube.com/watch?v=5_dRqPLP1dc
DNS Overview (Basics)

- World’s largest distributed database (maybe?)
- Maintains name <-> address relationship on the Internet
- Critical component of the Internet
DNS Overview (Data Flow)

- Client tries to resolve a name
- Asks the next level (“zone”) up
 - If the next highest zone knows, it answers
 - If not, it asks the next highest zone
 - Each zone has an authoritative server responsible for answering these requests
Potential Attacks

• **Why** might we want to exploit DNS requests?

• **How** might we exploit DNS requests?
Simple Attacks

• Typosquatting
• Denial of Service
• Registrar Hacking
Typosquatting

- Register an address that’s very similar to a well-known, legitimate one

- Occasionally used for phishing attacks
 - Usually just for ad views or financial squatting
Denial of Service

- Hosts must query DNS servers to find the IP addresses mapped to by unknown hostnames

- Overloading these servers can cause them to be unable to respond to requests

- Root DNS servers are the prime targets of attacks

- Can make it impossible to connect to web servers without knowing their IP address
Registrar Hacking

• Domain name-to-IP mappings are registered with a number of companies

• These companies’ name servers supply IP information about their managed domains

• If these servers are hacked, traffic can be redirected

• Happened to www.nytimes.com in August 2013
 • Melbourne IT registrar was hacked by the Syrian Electronic Army (with valid user credentials) and IP addresses were changed
Complex Attacks

- Rogue DNS Servers
- DNS Cache Poisoning
Rogue DNS Servers

- When a system doesn’t know a name <-> IP mapping, it goes to the next level up
 - If this next level up is a server controlled by a malicious entity, the response it gets may be wrong!

- Malware can manipulate the IP address that a system accesses to get DNS responses

- Alternatively, a DNS server along the chain may maliciously return incorrect data
 - Packets can be introduced into the flow, even without a proper DNS server in place: this is DNS spoofing!

- Certain ISPs (e.g., Comcast) use this technique as well!
 - Common example: if an uncommon or nonexistent hostname is typed in, the ISP’s DNS server may respond with a search page rather than an error

- A.k.a. “DNS hijacking” or “DNS redirection”
Various DNS servers along the chain serve requests from a local cache (your own system also has a cache).

This cache is supposed to expire regularly, but should mostly be correct.

By directly or indirectly altering this cache data can cause a trusted nameserver to return incorrect responses.
DNS attack story #1

- October 2002 and February 2007 root server attacks
 - DDoS attacks on DNS root servers
 - Peak ~900 Mbps; ~2000 Mbps
 - Only briefly affected performance
 - DNS redundancy, large number of root servers
DNS attack story #2

- ICANN June 2008 attack
 - Internet Corporation for Assigned Names and Numbers
 - Social engineering attack
 - Compromised name servers redirected
 www.icann.com to hacker-controlled IP address
DNS attack story #2
Possible Solutions

- Typosquatting
 - Buying up typos
 - Trademarking

- Denial of Service
 - Redundancy
 - Selectively blocking traffic
 - Already mostly solved!

- Registrar Hacking
 - Strong passwords
 - Anti-social engineering training
Possible Solutions (cont.)

- Rogue DNS Servers and Cache Poisoning
 - Trusted DNS servers (8.8.8.8, etc.)
 - ISPs may still rewrite certain DNS requests
 - Cryptographic security for requests
 - Digital signatures for data authenticity (secure DNS)
 - Server certificates (to verify that you’ve reached the right IP address)
www.questions.com

- 173.194.79.121