Introduction to Computer Networks

Network Layer Overview
Where we are in the Course

• Starting the Network Layer!
 – Builds on the link layer. Routers send packets over multiple networks

<table>
<thead>
<tr>
<th>Application</th>
<th>Transport</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Link</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical</td>
</tr>
</tbody>
</table>
Why do we need a Network layer?

- We can already build networks with links and switches and send frames between hosts ...

- Question: what are the downsides of using link layer solutions (switches) to connect all of the Internet?
Shortcomings of Switches

1. Don’t scale to large networks
 – Blow up of routing table, broadcast

![Diagram showing network with connected switches and broadcast arrows]

Table for all destinations in the world!

Broadcast new destinations to the whole world!
2. Don’t work across more than one link layer technology

– Hosts on Ethernet + 3G + 802.11 ...
Shortcomings of Switches (3)

3. Don’t give much traffic control
 – Want to plan routes / bandwidth

That was lame.
Network Layer Approach

• Scaling:
 – Hierarchy, in the form of prefixes

• Heterogeneity:
 – IP for internetworking

• Bandwidth Control:
 – Lowest-cost routing
 – Later QOS (Quality of Service)
Routing vs. Forwarding

- **Routing** is the process of deciding in which direction to send traffic
 - Network wide (global) and expensive

![Diagram showing network routing with multiple directions labeled as "Which way?"]
Routing vs. Forwarding (2)

- **Forwarding** is the process of sending a packet on its way
 - Node process (local) and fast
Introduction to Computer Networks

Network Services (§5.1)
Two Network Service Models

• Datagrams, or connectionless service
 – Like postal letters
 – (This one is IP)

• Virtual circuits, or connection-oriented service
 – Like a telephone call
Store-and-Forward Packet Switching

- Both models are implemented with **store-and-forward packet switching**
 - Routers receive a complete packet, storing it temporarily if necessary before forwarding it onwards
 - We use statistical multiplexing to share link bandwidth over time
Datagram Model

- Packets contain a destination address; each router uses it to forward each packet, possibly on different paths
Datagram Model (2)

- Each router has a forwarding table keyed by address
 - Gives next hop for each destination address; may change

\[
\begin{array}{c|c|c|c|}
\text{Dest.} & \text{A's table (initially)} & \text{A's table (later)} & \text{C's Table} \\
\hline
A & B & B & A \\
B & C & C & A \\
C & D & B & A \\
D & E & C & C \\
E & F & C & C \\
\hline
\end{array}
\]
IP (Internet Protocol)

- Network layer of the Internet, uses datagrams (next)
 - IPv4 carries 32 bit addresses on each packet (often 1.5 KB)

```
+-----------------+-----------------+-----------------+-----------------+
| Version         | IHL             | Differentiated Services | Total length    |
| Identification  |                 | D M F F              | Fragment offset |
| Time to live    | Protocol        | Header checksum      |                 |
| Source address  |                 |                  |                 |
| Destination address |               |                  |                 |
| Options (0 or more words) |  |                  |                 |
+-----------------+-----------------+-----------------+-----------------+

Payload (e.g., TCP segment)
```
Virtual Circuit Model

- **Three phases:**
 1. **Connection establishment, circuit is set up**
 - Path is chosen, circuit information stored in routers
 2. **Data transfer, circuit is used**
 - Packets are forwarded along the path
 3. **Connection teardown, circuit is deleted**
 - Circuit information is removed from routers

- Just like a telephone circuit, but virtual in the sense that no bandwidth need be reserved; statistical sharing of links
Virtual Circuits (2)

- Packets only contain a short label to identify the circuit
 - Labels don’t have any global meaning, only unique for a link
Virtual Circuits (3)

- Each router has a forwarding table keyed by circuit
 - Gives output line and next label to place on packet
Virtual Circuits (4)

- Each router has a forwarding table keyed by circuit
 - Gives output line and next label to place on packet
MPLS (Multi-Protocol Label Switching, §5.6.5)

- A virtual-circuit like technology widely used by ISPs
 - ISP sets up circuits inside their backbone ahead of time
 - ISP adds MPLS label to IP packet at ingress, undoes at egress
Datagrams vs Virtual Circuits

- Complementary strengths

<table>
<thead>
<tr>
<th>Issue</th>
<th>Datagrams</th>
<th>Virtual Circuits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup phase</td>
<td>Not needed</td>
<td>Required</td>
</tr>
<tr>
<td>Router state</td>
<td>Per destination</td>
<td>Per connection</td>
</tr>
<tr>
<td>Addresses</td>
<td>Packet carries full address</td>
<td>Packet carries short label</td>
</tr>
<tr>
<td>Routing</td>
<td>Per packet</td>
<td>Per circuit</td>
</tr>
<tr>
<td>Failures</td>
<td>Easier to mask</td>
<td>Difficult to mask</td>
</tr>
<tr>
<td>Quality of service</td>
<td>Difficult to add</td>
<td>Easier to add</td>
</tr>
</tbody>
</table>
Introduction to Computer Networks

Internetworking (§5.5, 5.6.1)
Topic

• How do we connect different networks together?
 – This is called **internetworking**
 – We’ll look at how IP does it
How Networks May Differ

• Basically, in a lot of ways:
 – Service model (datagrams, VCs)
 – Addressing (what kind)
 – QOS (priorities, no priorities)
 – Packet sizes
 – Security (whether encrypted)

• Internetworking hides the differences with a common protocol. (Uh oh.)
Connecting Datagram and VC networks

• An example to show that it’s not so easy
 – Need to map destination address to a VC and vice-versa
 – A bit of a “road bump”, e.g., might have to set up a VC
Internet Reference Model

- IP is the “narrow waist” of the Internet
 - Supports many different links below and apps above

1. Link
 - Ethernet
 - Cable
 - DSL
 - 3G
 - 802.11

2. Internet
 - IP

3. Transport
 - TCP
 - UDP

4. Application
 - SMTP
 - HTTP
 - RTP
 - DNS
IP as a Lowest Common Denominator

- Suppose only some networks support QOS or security etc.
 - Difficult for internetwork to support

- Pushes IP to be a “lowest common denominator” protocol
 - Asks little of lower-layer networks
 - Gives little as a higher layer service
IPv4 (Internet Protocol)

- Various fields to meet straightforward needs
 - Version, Header (IHL) and Total length, Protocol, and Header Checksum

![IPv4 header diagram]

Payload (e.g., TCP segment)
IPv4 (2)

- Network layer of the Internet, uses datagrams
 - Provides a layer of addressing above link addresses (next)
IPv4 (3)

- Some fields to handle packet size differences (later)
 - Identification, Fragment offset, Fragment control bits

![IPv4 header diagram]
IPv4 (4)

- Other fields to meet other needs (later, later)
 - Differentiated Services, Time to live (TTL)
Introduction to Computer Networks

IP Forwarding (§5.6.1-5.6.2)
IP Addresses

• IPv4 uses 32-bit addresses
 – Later we’ll see IPv6, which uses 128-bit addresses

• Written in “dotted quad” notation
 – Four 8-bit numbers separated by dots

\[
\begin{aligned}
\text{aaaaaaaabbbbbbccccccccddddd} & \leftrightarrow \text{A.B.C.D} \\
00010010001111110000000000000001 & \leftrightarrow
\end{aligned}
\]
IP Prefixes

- Addresses are allocated in blocks called prefixes
 - Addresses in an L-bit prefix have the same top L bits
 - There are 2^{32-L} addresses aligned on 2^{32-L} boundary
IP Prefixes (2)

• Written in “address/length” notation
 – Address is lowest address in the prefix, length is prefix bits
 – E.g., 128.13.0.0/16 is 128.13.0.0 to 128.13.255.255
 – So a /24 (“slash 24”) is 256 addresses, and a /32 is one address

00010010|00011111|00000000|xxxxxxxx ↔

 ↓ ↓ ↓ ↓ ↓

.broadcast broadcast broadcast broadcast ↔ 128.13.0.0/16
Classful IP Addressing

- Originally, IP addresses came in fixed size blocks with the class/size encoded in the high-order bits
 - They still do, but the classes are now ignored

![Network portion and Host portion diagram]

- Class A, 2^{24} addresses
- Class B, 2^{16} addresses
- Class C, 2^8 addresses
IP Forwarding

- All addresses on one network belong to the same prefix
- Node uses a table that lists the next hop for prefixes

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.24.0.0/19</td>
<td>D</td>
</tr>
<tr>
<td>192.24.12.0/22</td>
<td>B</td>
</tr>
</tbody>
</table>
Longest Matching Prefix

- Prefixes in the table might overlap!
 - Combines hierarchy with flexibility

- **Longest matching prefix** forwarding rule:
 - For each packet, find the longest prefix that contains the destination address, i.e., the most specific entry
 - Forward the packet to the next hop router for that prefix
Longest Matching Prefix (2)

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Next Hop</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.24.0.0/19</td>
<td>D</td>
</tr>
<tr>
<td>192.24.12.0/22</td>
<td>B</td>
</tr>
</tbody>
</table>

192.24.6.0 →
192.24.16.32 →
Flexibility of Longest Matching Prefix

• Can provide default behavior, with less specifics
 – To send traffic going outside an organization to a border router

• Can special case behavior, with more specifics
 – For performance, economics, security, ...
Performance of Longest Matching Prefix

• Uses hierarchy for a compact table
 – Relies on use of large prefixes

• Lookup more complex than table
 – Used to be a concern for fast routers
 – Not an issue in practice these days
Introduction to Computer Networks

Helping IP with ARP, DHCP
(§5.6.4)
Topic

- Filling in the gaps we need to make for IP forwarding work in practice
 - Getting IP addresses (DHCP)
 - Mapping IP to link addresses (ARP)
Getting IP Addresses

• Problem:
 – A node wakes up for the first time ...
 – What is its IP address? What’s the IP address of its router? Etc.
 – At least Ethernet address is on NIC

Hey, where am I?
Getting IP Addresses (2)

1. Manual configuration (old days)
 - Can’t be factory set, depends on use

2. A protocol for automatically configuring addresses (DHCP)
 - Shifts burden from users to IT folk

What’s my IP?

Use A.B.C.D
DHCP

• DHCP (Dynamic Host Configuration Protocol), from 1993, widely used

• It leases IP address to nodes

• Provides other parameters too
 – Network prefix
 – Address of local router
 – DNS server, time server, etc.
DHCP Protocol Stack

- DHCP is a client-server application
 - Uses UDP ports 67, 68

```
DHCP
UDP
IP
Ethernet
```
DHCP Addressing

• Bootstrap issue:
 – How does node send a message to DHCP server before it is configured?

• Answer:
 – Node sends broadcast messages that delivered to all nodes on the network
 – Broadcast address is all 1s
 – IP (32 bit): 255.255.255.255
 – Ethernet (48 bit): ff:ff:ff:ff:ff:ff
DHCP Messages

Client <-> Server

One link
DHCP Messages (2)

Broadcast

Client

Server

DISCOVER

OFFER

REQUEST

ACK
DHCP Messages (3)

- To renew an existing lease, an abbreviated sequence is used:
 - REQUEST, followed by ACK

- Protocol also supports replicated servers for reliability
Sending an IP Packet

• Problem:
 – A node needs Link layer addresses to send a frame over the local link
 – How does it get the destination link address from a destination IP address?

Uh oh ... My IP is 1.2.3.4
ARP (Address Resolution Protocol)

- Node uses to map a local IP address to its Link layer addresses
ARP Protocol Stack

- ARP sits right on top of link layer
 - No servers, just asks node with target IP to identify itself
 - Uses broadcast to reach all nodes

<table>
<thead>
<tr>
<th>ARP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet</td>
</tr>
</tbody>
</table>
ARP Messages
ARP Messages (2)

Node → REQUEST
Who has IP 1.2.3.4?

Broadcast

Target → REPLY
I do at 1:2:3:4:5:6
Introduction to Computer Networks

Packet Fragmentation(§5.5.5)
Topic

• How do we connect networks with different maximum packet sizes?
 – Need to split up packets, or discover the largest size to use
Packet Size Problem

• Different networks have different maximum packet sizes
 – Or MTU (Maximum Transmission Unit)
 – E.g., Ethernet 1.5K, WiFi 2.3K

• Prefer large packets for efficiency
 – But what size is too large?
 – Difficult because node does not know complete network path
Packet Size Solutions

• Fragmentation (now)
 – Split up large packets in the network if they are too big to send
 – Classic method, dated

• Discovery (next)
 – Find the largest packet that fits on the network path and use it
 – IP uses today instead of fragmentation
IPv4 Fragmentation

- Routers fragment packets that are too large to forward
- Receiving host reassembles to reduce load on routers
IPv4 Fragmentation Fields

- Header fields used to handle packet size differences
 - Identification, Fragment offset, MF/DF control bits

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>4 bits</td>
</tr>
<tr>
<td>IHL</td>
<td>4 bits</td>
</tr>
<tr>
<td>Differentiated Services</td>
<td>8 bits</td>
</tr>
<tr>
<td>Identification</td>
<td>16 bits</td>
</tr>
<tr>
<td>Time to live</td>
<td>8 bits</td>
</tr>
<tr>
<td>Protocol</td>
<td>16 bits</td>
</tr>
<tr>
<td>Header checksum</td>
<td>16 bits</td>
</tr>
<tr>
<td>Source address</td>
<td>32 bits</td>
</tr>
<tr>
<td>Destination address</td>
<td>32 bits</td>
</tr>
<tr>
<td>Options (0 or more words)</td>
<td>0 to 64 bits</td>
</tr>
<tr>
<td>Payload (e.g., TCP segment)</td>
<td></td>
</tr>
</tbody>
</table>
IPv4 Fragmentation Procedure

• Routers split a packet that is too large:
 – Typically break into large pieces
 – Copy IP header to pieces
 – Adjust length on pieces
 – Set offset to indicate position
 – Set MF (More Fragments) on all pieces except last

• Receiving hosts reassembles the pieces:
 – Identification field links pieces together,
 MF tells receiver when it has all pieces
IPv4 Fragmentation (3)

Before
MTU = 2300

ID = 0x12ef
Data Len = 2300
Offset = 0
MF = 0

MTU = 1500

ID = 0x12ef
Data Len = 1500
Offset = 0
MF = 1

ID = 0x12ef
Data Len = 800
Offset = 1500
MF = 0
IPv4 Fragmentation (4)

• It works!
 – Allows repeated fragmentation

• But fragmentation is undesirable
 – More work for routers, hosts
 – Tends to magnify loss rate
 – Security vulnerabilities too
Path MTU Discovery

- Discover the MTU that will fit
 - So we can avoid fragmentation
 - The method in use today

- Host tests path with large packet
 - Routers provide feedback if too large; they tell host what size would have fit
Path MTU Discovery (2)
Path MTU Discovery (3)

Packet (with length)

Source -> Test #1 (1400)

MTU=1400

Try 1200

Destination

Test #2 (1200)

MTU=1200 bytes

Try 900

Test #3 (900)

MTU=900
Introduction to Computer Networks

Error Handling with ICMP (§5.6.4)
Internet Control Message Protocol

• ICMP is a companion protocol to IP
 – They are implemented together
 – Sits on top of IP (IP Protocol=1)

• Provides error report and testing
 – Error is at router while forwarding
 – Also testing that hosts can use
ICMP Errors

• When router encounters an error while forwarding:
 – It sends an ICMP error report back to the IP source address
 – It discards the problematic packet; host needs to rectify
ICMP Message Format

• Each ICMP message has a Type, Code, and Checksum
• Often carry the start of the offending packet as payload
• Each message is carried in an IP packet
ICMP Message Format (2)

- Each ICMP message has a Type, Code, and Checksum
- Often carry the start of the offending packet as payload
- Each message is carried in an IP packet

<table>
<thead>
<tr>
<th>Src=router, Dst=A</th>
<th>Type=X, Code=Y</th>
<th>Src=A, Dst=B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol = 1</td>
<td></td>
<td>XXXXXXXXXXXX</td>
</tr>
</tbody>
</table>

Portion of offending packet, starting with its IP header
Example ICMP Messages

<table>
<thead>
<tr>
<th>Name</th>
<th>Type / Code</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dest. Unreachable (Net or Host)</td>
<td>3 / 0 or 1</td>
<td>Lack of connectivity</td>
</tr>
<tr>
<td>Dest. Unreachable (Fragment)</td>
<td>3 / 4</td>
<td>Path MTU Discovery</td>
</tr>
<tr>
<td>Time Exceeded (Transit)</td>
<td>11 / 0</td>
<td>Traceroute</td>
</tr>
<tr>
<td>Echo Request or Reply</td>
<td>8 or 0 / 0</td>
<td>Ping</td>
</tr>
</tbody>
</table>

Testing, not a forwarding error: Host sends Echo Request, and destination responds with an Echo Reply
Introduction to Computer Networks

IP Version 6 (§5.6.3)
• At least a billion Internet hosts and growing ...

• And we’re using 32-bit addresses!

Source: Internet Systems Consortium (www.isc.org)
The End of New IPv4 Addresses

- Now running on leftover blocks held by the regional registries; much tighter allocation policies

Exhausted on 2/11!

Exhausted on 4/11 and 9/12!

IANA (All IPs) → ARIN (US, Canada) → ISPs
IANA (All IPs) → APNIC (Asia Pacific) → ISPs
IANA (All IPs) → RIPE (Europe) → ISPs
IANA (All IPs) → LACNIC (Latin Amer.) → Companies
IANA (All IPs) → AfriNIC (Africa) → Companies

End of the world? 12/21/12?
IP Version 6 to the Rescue

• Effort started by the IETF in 1994
 – Much larger addresses (128 bits)
 – Many sundry improvements

• Became an IETF standard in 1998
 – Nothing much happened for a decade
 – Hampered by deployment issues, and a lack of adoption incentives
 – Big push ~2011 as exhaustion looms
IPv6 Deployment

Percentage of users accessing Google via IPv6

Source: Google IPv6 Statistics, 30/1/13

Time for growth!
IPv6

- Features large addresses
 - 128 bits, most of header
- New notation
 - 8 groups of 4 hex digits (16 bits)
 - Omit leading zeros, groups of zeros
IPv6 (2)

- Lots of other, smaller changes
 - Streamlined header processing
 - Flow label to group of packets
 - Better fit with “advanced” features (mobility, multicasting, security)
IPv6 Transition

• The Big Problem:
 – How to deploy IPv6?
 – Fundamentally incompatible with IPv4

• Dozens of approaches proposed
 – Dual stack (speak IPv4 and IPv6)
 – Translators (convert packets)
 – Tunnels (carry IPv6 over IPv4) »
Tunneling

- Native IPv6 islands connected via IPv4
 - Tunnel carries IPv6 packets across IPv4 network
Tunneling (2)

- Tunnel acts as a single link across IPv4 network
Tunneling (3)

• Tunnel acts as a single link across IPv4 network
 - Difficulty is to set up tunnel endpoints and routing
Introduction to Computer Networks

Network Address Translation
(§5.6.2)
Topic

• What is NAT (Network Address Translation)? How does it work?
 – NAT is widely used at the edges of the network, e.g., homes

I’m a NAT box too!

Internet
Middleboxes

- Sit “inside the network” but perform “more than IP” processing on packets to add new functionality
 - NAT box, Firewall / Intrusion Detection System
Middleboxes (2)

• **Advantages**
 – A possible rapid deployment path when there is no other option
 – Control over many hosts (IT)

• **Disadvantages**
 – Breaking layering interferes with connectivity; strange side effects
 – Poor vantage point for many tasks
NAT (Network Address Translation) Box

- NAT box connects an internal network to an external network
 - Many internal hosts are connected using few external addresses
 - Middlebox that “translates addresses”

- Motivated by IP address scarcity
 - Controversial at first, now accepted
NAT (2)

- Common scenario:
 - Home computers use “private” IP addresses
 - NAT (in AP/firewall) connects home to ISP using a single external IP address

Unmodified computers at home \(\downarrow\) \hspace{1cm} Looks like one computer outside

NAT box

ISP
How NAT Works

• Keeps an internal/external table
 – Typically uses IP address + TCP port
 – This is address and port translation

<table>
<thead>
<tr>
<th>Internal IP:port</th>
<th>What ISP thinks</th>
<th>External IP : port</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.12 : 5523</td>
<td>44.25.80.3 : 1500</td>
<td></td>
</tr>
<tr>
<td>192.168.1.13 : 1234</td>
<td>44.25.80.3 : 1501</td>
<td></td>
</tr>
<tr>
<td>192.168.2.20 : 1234</td>
<td>44.25.80.3 : 1502</td>
<td></td>
</tr>
</tbody>
</table>

• Need ports to make mapping 1-1 since there are fewer external IPs
How NAT Works (2)

- Internal → External:
 - Look up and rewrite Source IP/port

<table>
<thead>
<tr>
<th>Internal IP:port</th>
<th>External IP : port</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.12 : 5523</td>
<td>44.25.80.3 : 1500</td>
</tr>
</tbody>
</table>

Internal source:

![Diagram showing NAT box with internal and external sources]

External destination:

IP=X, port=Y

Src =
Dst =

Src =
Dst =

CSE 461 University of Washington
How NAT Works (3)

• External \rightarrow Internal
 – Look up and rewrite Destination IP/port

<table>
<thead>
<tr>
<th>Internal IP:port</th>
<th>External IP : port</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.12 : 5523</td>
<td>44.25.80.3 : 1500</td>
</tr>
</tbody>
</table>

External source
IP=X, port=Y

Src =
Dst =

NAT'box

Src =
Dst =

Internal destination
How NAT Works (4)

- Need to enter translations in the table for it to work
 - Create external name when host makes a TCP connection

<table>
<thead>
<tr>
<th>Internal IP:port</th>
<th>External IP : port</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.12 : 5523</td>
<td></td>
</tr>
</tbody>
</table>

Internal source

NAT box

External destination
IP=X, port=Y

Src = Dst =

Src = Dst =
NAT Downsides

• Connectivity has been broken!
 – Can only send incoming packets after an outgoing connection is set up
 – Difficult to run servers or peer-to-peer apps (Skype) at home

• Doesn’t work so well when there are no connections (UDP apps)

• Breaks apps that unwisely expose their IP addresses (FTP)