Section 2 – Link Layer

CSE 461 – Autumn 2015
Panji Wisesa
Byte Count

• Add a length to the start if the frame
• No protection against any errors
Byte Stuffing

• Have a special flag byte value that means start/end of frame

• Replace the flag inside the frame with an escape code
Bit Stuffing

• Like byte stuffing but in the bit level
• Use six consecutive 1s as the flag
 • On transmit, after five 1s in the data, insert a 0
 • On receive, a 0 after five 1s is deleted

Data bits 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

Transmitted bits with stuffing 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 0 0 1 0

Stuffed bits
Error Detection and Correction

• Done with check bits, calculated from the data to be transmitted
• More check bits usually means more errors can be detected and calculated
• However, it’s a balance between the overhead of check bits and the reliability from those check bits
Why Check Bits Work

• The combination of the data and check bits can be called a codeword.

• The check bit works because there’s a lot more codewords than valid ones (the check bits matches the check bits calculated from the data).

• So it’s very unlikely that errors can transform a valid codeword into a different valid codeword.
Hamming Distance

• Distance is the number of bit flips needed to change D1 to D2
• Hamming distance of a code is the minimum distance between any pair of valid codewords
• For a code of distance d+1, up to d errors will always be detected
• For a code of distance 2d+1, up to d errors can always be corrected by mapping to the closest codeword
Error Detection

• Standard functions to create the check bits:
 • Parity bit, 1 check bit from the sum of all data bits, Hamming distance of 2
 • Checksum, 16 check bits from 16-bit ones complement arithmetic, Hamming distance of 2, good for Burst Errors
 • CRC (Cyclic Redundancy Check), k check bits from n data bits such that n+k bits are evenly divisible by a generator C, Hamming distance of 4, good for Burst Errors up to k bits
Checksum

Sending:
1. Arrange data in 16-bit words
2. Put zero in checksum position, add
3. Add any carryover back to get 16 bits
4. Negate (complement) to get sum

Receiving:
1. Arrange data in 16-bit words
2. Checksum will be non-zero, add
3. Add any carryover back to get 16 bits
4. Negate the result and check it is 0
CRC

Data bits:
1101011111

Check bits:
\[C(x) = x^4 + x^1 + 1 \]
\[C = 10011 \]
\[k = 4 \]
Error Correction

• Harder than detection, can correct only d errors in codewords with Hamming distance $\geq 2d + 1$
• In this class we will mostly talk about Hamming Code for error correction
Hamming Code

• Allows the creation of a codeword with a Haming distance of 3, for every n data bits there must be k check bits where $(n = 2^k - k - 1)$

• The check bits are located in positions that are powers of 2, so $1 = 2^0$, $2 = 2^1$, $4 = 2^2$, etc.

• Check bits in position p is parity for positions with a p term in their values
Hamming Code Check Bits Coverage

Data = 4 bits, Check bits = 3 bits, Codeword = 7 bits

Check bits are located at:

• 1 = 2^0, which means they cover 3, 5, & 7
• 2 = 2^1, which means they cover 3, 6, & 7
• 4 = 2^2, which means they cover 5, 6, & 7

What the check bits cover are determined by whether the location contains them in their term or in other words, the location in binary has a 1 at the check bit’s power to 2.

The value of the check bits themselves are the summation of the bits at those positions.

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>001</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
</tr>
</tbody>
</table>
Hamming Code Example

To decode:
- Recompute check bits (with parity sum including the check bit)
- Arrange as a binary number
- Value (syndrome) tells error position
- Value of zero means no error
- Otherwise, flip bit to correct

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
0 & 1 & 0 & 0 & 1 & 1 & 0 \\
\end{array}
\]

\[
p_1 = 0 + 0 + 1 + 1 = 0, \quad p_2 = 1 + 0 + 1 + 1 = 1, \\
p_4 = 0 + 1 + 1 + 1 = 1
\]

Syndrome = 1 1 0, flip position 6
Data = 0 1 0 1 (correct after flip!)
Error Detection vs. Correction

• Usually error correction is used when errors are expected and there’s no time to retransmit

• While error detection is more efficient when errors are not expected or when the errors are really large so no hope of correction anyway

• But to choose one or the other still depends on the amount of data being sent and the rate of error