CSE 461 - Module 8: LAN Structure

What is a LAN?

- Direct delivery of frames
 - Frame header has a destination address field (and a source field and ...)
 - Sender emits the frame
 - All stations see the frame
 - Each checks if the destination address in the frame header matches its own address
- Broadcast domain
 - There is a designated address meaning "everyone"
 - Often the address with all 1 bits (e.g., FF.FF.FF.FF.FF.FF.)
 - Broadcast frames never pass through routers
 - Routers connect one LAN to another LAN
 - The Internet is a collection of inter-connected LANs

Overview: Repeaters, Hubs, Bridge, VLANs

- A repeater recreates the analog signal it hears as input on all output ports
 - Used to extend range of LAN
- A hub
 - Operates on frames (i.e., digital data)
 - Repeats the frame on all ports other than the one it came in on
 - Still a single collision domain
- A bridge
 - Operates on frames
 - Can buffer frames
 - Can try to avoid repeating frames on ports that won't be interested in it
 - Creates multiple collision domains

- Virtual LANs (VLANs):
 - Overlay multiple (logical) LANs on the same physical media (wires, RF spectrum, ...)
 - Remember what a (logical) LAN is: direct deliver + broadcast domain
 - It's about making sure a station does not tsee some frames (not about making sure it does)
 - However, distinct VLANs may be in the same collision domain (because they share phsical media)

(Learning) Bridges

- Goals:
 - maximize the peak possible useful transmission rate
 - Example: Allow a transmission between two stations on the left to occur at the same time as a transmission between two stations on the right (in the figure at the beginning of these notes)
 - require no setup or management
 - Plug and play...
- Operation
 - Bridge builds a map from station address to port
 - Example: 21.45.F7.33.28.10 is reachable through my port 3
 - When a frame arrives, look up destination address in your map
 - If you find an entry, send the frame out the port given by the map (if that isn't the port it arrived on)
 - If you don't find an entry, you don't know where the station might be
 - Send it everywhere (except the port it came in on)
 - This is called "flooding"
 - How is the map created?
 - Learn it
 - Each time a frame arrives, it carries a source addresses
 - Make sure your map has an entry for the source address indicating that port
 - How do you get rid of map entries
 - You have to get rid of them for garbage collection and in case a station moves
 - "Aging" entries have a limited lifetime before they're deleted, unless you hear that source address on that port in the mean time

Bridge Spanning Tree Algorithm

- Motivation: if you create a cycle among bridges, you have a problem
 - What problem? Why?

- Goals:
 - Have bridges agree on a spanning tree that overlays the physical topology
 - Ignore some bridge-bridge links
 - Now operate as normal learning bridges, but just over the links of the spanning t ree
- Finding the spanning tree: strategy
 - We'll create a minimum cost spanning tree
 - Because it's easy to do in a distributed way more than because it's minimum cost
 - Need to:
 - Agree on a root
 - Find a single parent (unless you're the root)
 - Remain connected
 - Agree on a root
 - We'll choose the bridge with the lowest ID
 - Find a single parent
 - We'll choose the neighbor that is closest to the spanning tree root
 - Remain connected
 - Everyone can reach the root, so everyone can reach each other
- Finding the spanning tree: procedure
 - Each node sends control message containing a triple:
 (who I think the root is, who I am, how far I am from the root)
 - Start with (my ID, my ID, 0)
 - When you hear from a neighbor, "accept" its advertisement if the root is smaller than the one you know about
 - Update your state to (new root id, my id, neighbor's distance to new root id + 1)
 - Your uplink is to that neighbor
 - Also accept if neighbor lists the same root you already know of but the neighbor is closer to the root than your existing parent
 - update your state and make that neighbor your uplink

VLANs

- 802.1Q
- •

	net frame								
PREAMBLE 7	SFD 7	DA 6	SA 6	1	TYPE 2	DATA 48-1500		CRC 4	
IEEE 802.1q-tag	ged frame		IEEE	802.1q ap: A/	only: 81 A-AA-03	-00			and a second and a second and a second and a second a s
PREAMBLE 7	SFD 7	DA 6	SA 6	TPI 2	TAG 2	TYPE 2	DATA 48-1500		CRC 4
			[Insert	ed fields]	*****	· · · · · · · · · · · · · · · · · · ·	
ĺ	ETHER					Bits of VLAN ID (VID) to identify 4096 possible VLANs 12			

- "Normal" Ethernet frame has a 16-bit field that carries either:
 - frame length, or
 - type field (for demultiplexiing)
- If the bits in that position are 0x8100, it means an 802.1Q tag is included in the frame
 - That tag is 32 bits, and is inserted ahead of the actual type/length field
 - \circ $\,$ Low order 12 bits are a VLAN ID number $\,$
- Hosts assigned to a particular VLAN form frames that include the 802.1Q tag
- VLAN bridges
 - Have one or more VLAN IDs associated with each output port
 - Forward an incoming frame with a particular VLAN ID only on those ports that are marked with that ID
 - Perform learning in the normal way
 - But flooding is only over ports that include the VLAN ID
- Why do all this?
 - Security
 - Separate logical connectivity from physical layout
 - Distinct broadcast domains
 - Multiplex hardware resources