CSE 461 - Module 7: Medium Access Control (MAC) Layer Part 1

Topic: How to share a “channel”

- Channels
 - Wires, RF spectrum, fiber
 - Full duplex / half duplex

- Share by:
 - time or frequency or code

- Static vs. dynamic sharing
 - Static: OTA TV (frequency), classrooms (time), ??? (code division)
 - Dynamic: seats in the HUB dining area, Go cars
 - Dynamic contention-free: gas station bathrooms that require a key
 - Static vs. Dynamic
 - Pro's of each
 - Con's of each

- Bursty traffic

Channel Properties

- Synchronized vs. unsynchronized transmissions

- Carrier sense, or not

- Collisions and collision detection

Code Division Multiplexing

- Section 2.5.5 of the text

- All stations are allowed to send at the same time, using the same range of frequencies

- Each station encodes data using a chip sequence

- Chip sequences are orthogonal to each other
 - Dot product of any two distinct sequences is 0
 - Dot product of a sequence with itself is m (length of the sequence)
 - Dot product of a sequence with the negations of itself is -m

- Example sequences:
 - A:(1, 1, 1, 1), B:(1, 1, -1, -1), C:(1, -1, -1, 1), D:(1, -1, 1, -1)
• Transmit your sequence when you have a 1 to send, and transmit negation of your sequence when you have a 0 to send

• Example:
 ◦ Data – A: 1, B: 1, C: 0, D: 0
 ◦ A:(1,1,1,1), B:(1,1,-1,-1), C:(-1, 1, 1, -1), D:(-1, 1, -1, 1)

• Decode
 ◦ Your receive sum of the signals sent
 ◦ Take dot product of that with chip sequence for station you want to listen to
 ◦ If result is positive, that station sent a 1; if negative, it sent a 0
 ◦ Example: A: 1, B: 1, C: 0, D: 0
 ▪ (1,1,1,1) + (1,1,-1,-1) + (-1, 1, 1, -1) + (-1,1,-1,1) = (0, 4, 0, 0)
 ▪ Listen for A: (0, 4, 0, 0) dot (1,1,1,1) = 0*1 + 4*1 + 0*1 + 0*1 = 4
 • So A sent 1
 ▪ Listen for C: (0, 4, 0, 0) dot (1, -1, -1, 1) = -4
 • So C sent 0

Dynamic Multiple Access: Pure Aloha

• Original multiple access protocol
• Basic protocol: when you have data, send it
• No carrier sense, no collision detection
 ◦ But does have lost frame detection and retransmission

• Collision resolution protocol
 ◦ If you collide, pick a random delay in [0,T] and then send again
• Should T be big or small?
• Pure Aloha capacity
 ◦ What is required for a transmission to succeed?
 ◦ Assuming Poisson arrivals (basically, coin flips in each of infinitesimal time slots)
 ▪ When the overall transmission rate is G, the probability of no transmissions in a period of length t is e^{-Gt}
 ◦ Now assuming transmissions are all of same duration (and calling that unit time)
 ▪ A collision occurs if someone else starts a transmission either during our transmission or less than 1 time unit before we start
 ▪ The probability of that is e^{-2G}
 ▪ So rate of successful transmissions is Ge^{-2G}
 • From G=0 to G=1/2 this increases, and then decreases
 • Maximum is $1/2e$ (at G=1/2)
• Note that the maximum occurs when the expected number of transmissions in a contention interval is 1
 ○ Is the achievable maximum goodput affected by the length of the transmission?

Slotted Aloha

• We can do better if we somehow synchronize transmissions
 ○ When you have data to send, wait to send until the next slot time arrives
 ▪ Slots are the length of one transmission
 • The collision window is now one transmission time, rather than two
 • Probability of a collision is now e^G, and maximum achievable throughput is $1/e$ (at $G=1$)