CSE 461 - Module 12: IPv6 Addressing

IPv6 Address Architecture

- 128-bit addresses, written as strings like:
 - 2001:0DB8:0000:0008:0800:200C:417A, or
 - 2001:DB8:0:0:8:800:200C:417A , or
 - 2001:DB8::8:800:200C:417A

- Unicast, multicast, and anycast addresses
 - No broadcast – use multicast instead
 - Multicast
 - FF::/8
 - Includes a 4 bit scope field
 - interface-local, link-local, admin-local, site-local, organization-local, global
 - Anycast – closest instance of a single address
 - For any assigned anycast address, there is a longest prefix P of that address that identifies the topological region in which all interfaces belonging to that anycast address reside. Within the region identified by P, the anycast address must be maintained as a separate entry in the routing system (commonly referred to as a "host route"); outside the region identified by P, the anycast address may be aggregated into the routing entry for prefix P.
 - Example use: Packets sent to the Subnet-Router anycast address will be delivered to one router on the subnet. All routers are required to support the Subnet-Router anycast addresses for the subnets to which they have interfaces.

- Special addresses
 - :: - the unspecified address (all 0's)
 - ::1 – the loopback address
 - FE80::/10 – link local unicast addresses

- Required addresses
 - Link-local address, loopback address, All-Nodes multicast address, Solicited-Node multicast address
 - If a router, additionally: Subnet-Router anycast, All-Routers multicast

Obtaining an IPv6 Address

- All IPv6 addresses have a lease
 - The lease could be of infinite duration, however

- DHCPv6 exists
 - Built on IP, using autoconfigured IP addresses and anycast
• Stateless autoconfiguration exists
 ○ Step 1: generate link-local address
 ▪ Host generates unique interface ID
 ▪ Combine with link-local prefix to form tentative address
 ▪ Verify not in use
 ▪ Send Neighbor Solicitation packet to the Solicited Node multicast address that is derived
 from the link-local address, and hope there are no replies
 ▪ Part of Neighbor Discovery Protocol (NDP)
 ▪ Subscribe to corresponding Solicited Node multicast group
 ○ Step 2; try to generate global unicast addresses
 ▪ Send Router Solicitation packet to the All-Routers multicast address
 ▪ Responses contain network prefixes and lease lifetime information
 ▪ Combine interface ID (the same one as in step 1) with network prefix
 ▪ Verify not in use
 ▪ Routers periodically send out Router Advertisements that include network prefix information
 ○ When first generated, global IP address is “preferred” and should be used
 ▪ As you near lease expiration, it becomes deprecated – can be used for existing exchanges, but
 should not be used for any new connections/exchanges

• IPv6:
 ○ Separates notion of generating an address for an interface and determining the prefix of the local
 link
 ○ Allows there to be more than one prefix on the local link
 ○ Includes a “neighbor unreachability” analysis that allows node to detect failures (and attempt some
 kind of recovery)
 ▪ Active: send a Neighbor Solicitation message to the node
 ▪ Passive: infer from traffic you see
 ▪ E.g., if you see a TCP ACK come back from some remote host, you can infer the local
 router/gateway you're using is up
 ▪ Not allowed: anything that doesn't imply you can establish two-way communication
 ▪ E.g., if you see an All-Nodes multicast from some neighbor, you know it can send to you but
 you don't know that it can hear you