CSE 461

Section #9: Bitcoins
What are Bitcoins?

- Digital currency
- Unique string of bits
- Use cryptography for security and privacy
- Not tied to names: hard to trace
- Finite set of Bitcoins
Bitcoin Facts

• Created by Satoshi Nakamoto (pseudonym)
• Current Bitcoins in circulation:
 • About 12.8M BTC
• 1 BTC = ?
 • $570.17 (as of last night)
• Maximum possible number of Bitcoins:
 • ~21,000,000
• Great FAQ here:
 • https://en.bitcoin.it/wiki/FAQ
Bitcoin vocabulary

- Transaction
 - Exchange of Bitcoins

- Block
 - Record of some number of Bitcoin transactions

- Mine
 - To verify (i.e., legitimize) a block of transactions by generating a certain type of cryptographic hash
 - When a new block is generated, new Bitcoins are also generated with it

- Nonce
 - Arbitrary number used to alter hash output (more later)
Bitcoin vocabulary

• Block chain
 • A chain of blocks, each linked together with a hash of the previous block

• Genesis Block
 • Block at the beginning of a block chain which generates some number of Bitcoins

• Coinbase transaction
 • Transaction at the beginning of a block which has no inputs
 • Generates coins
Why’s it hard to generate Bitcoins?

• Each block contains:
 • Version number
 • Reference to previous block (hash)
 • Merkle root (we’ll explain later)
 • Creation time
 • Difficulty
 • Nonce
 • List of transactions
Why’s it hard to generate Bitcoins?

- A block is not valid until a hash of the block header starts with a certain number of zeroes, determined by the “difficulty”

- E.g., if the difficulty is 3, we need 3 bytes of zeroes at the beginning of the hash:
 - 0x00000045F3B2…. Valid?
 - Yes
 - 0x00000387ECD…. Valid?
 - No
 - 0x583F23940FBA2…. Valid?
 - No

- Find a valid hash by trying different nonces
- Once we find a valid hash, we have a valid block, so we add it to block chain
 - Bitcoins are generated, yay!

- Generating hashes like the above is hard: why?
 - Cryptographic hashes!
Digital Signatures

- Cryptographic hashes
 - Used as “names” in Bitcoin
 - Hash a block of data, then refer to it by its hash

- Public-private key encryption
 - Talked about last lecture

- Cryptographic signatures
 - Use your private key to encrypt data
 - Anyone who knows your public key can decrypt it
 - This shows that you generated the data

- Why would signatures be useful for Bitcoin?
 - Used to prove transactions were generated by the party from whom the Bitcoins are being transferred

- Public keys are used to name transaction recipients
Merkle Trees

- Binary tree of hashes
- Leaf nodes are hashes of data blocks
- Hashes are hashed in pairs
- One hash at the top:
 - The “Merkle root”
- The Merkle root of all of the transactions in a block is included in the block header
Project 4

- Verify a set of transactions
 - Get transaction data over the network, or locally as a file
 - Throw away invalid transactions
 - Either as one block, or as many blocks (in a block chain)
 - Grouping into many blocks will generate more Bitcoins
- Keep track of Bitcoin balances for various parties listed in the transactions
- Submit code, block chain data, and ending balance list
- Competitive mining