CSE 461: Error Detection and Correction

Next Topic

- Error detection and correction
- Focus: How do we detect and correct messages that are garbled during transmission?
- The responsibility for doing this cuts across the different layers
Errors and Redundancy

- Noise can flip some of the bits we receive
 - We must be able to detect when this occurs!
 - Who needs to detect it? (links/routers, OSs, or apps?)

- Basic approach: add redundant data
 - Error detection codes allow errors to be recognized
 - Error correction codes allow errors to be repaired too

Motivating Example

- A simple error detection scheme:
 - Just send two copies. Differences imply errors.

- Question: Can we do any better?
 - With less overhead
 - Catch more kinds of errors
- Answer: Yes – stronger protection with fewer bits
 - But we can’t catch all inadvertent errors, nor malicious ones

- We will look at basic block codes
 - K bits in, N bits out is a (N,K) code
 - Simple, memoryless mapping
Detection vs. Correction

- Two strategies to correct errors:
 - Detect and retransmit, or Automatic Repeat reQuest. (ARQ)
 - Error correcting codes, or Forward Error Correction (FEC)
- Retransmissions typically at higher levels (Network+). Why?
- Question: Which should we choose?

Retransmissions vs. FEC

- The better option depends on the kind of errors and the cost of recovery
- Example: Message with 1000 bits, Prob(bit error) 0.001
 - Case 1: random errors
 - Case 2: bursts of 1000 errors
 - Case 3: real-time application (teleconference)
The Hamming Distance

- Errors must not turn one valid codeword into another valid codeword, or we cannot detect/correct them.
- **Hamming distance** of a code is the smallest number of bit differences that turn any one codeword into another
 - e.g., code 000 for 0, 111 for 1, Hamming distance is 3
- For code with distance $d+1$:
 - d errors can be detected, e.g., 001, 010, 110, 101, 011
- For code with distance $2d+1$:
 - d errors can be corrected, e.g., 001 \rightarrow 000

Parity

- Start with n bits and add another so that the total number of 1s is even (even parity)
 - e.g. 0110010 \rightarrow 01100101
 - Easy to compute as XOR of all input bits
- Will detect an odd number of bit errors
 - But not an even number
- Does not correct any errors
2D Parity

- Add parity row/column to array of bits
- How many simultaneous bit errors can it detect?
- Which errors can it correct?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0101001</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1101001</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1011110</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0001110</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0110100</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1011111</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1111011</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Checksums

- Used in Internet protocols (IP, ICMP, TCP, UDP)
- Basic Idea: Add up the data and send it along with sum

Algorithm:
- checksum is the 1s complement of the 1s complement sum of the data interpreted 16 bits at a time (for 16-bit TCP/UDP checksum)
- 1s complement: flip all bits to make number negative
 - Consequence: adding requires carryout to be added back
CRCs (Cyclic Redundancy Check)

- Stronger protection than checksums
 - Used widely in practice, e.g., Ethernet CRC-32
 - Implemented in hardware (XORs and shifts)

- Algorithm: Given n bits of data, generate a k bit check sequence that gives a combined n + k bits that are divisible by a chosen divisor C(x)

- Based on mathematics of finite fields
 - “numbers” correspond to polynomials, use modulo arithmetic
 - e.g, interpret 10011010 as $x^7 + x^4 + x^3 + x^1$

How is C(x) Chosen?

- Mathematical properties:
 - All 1-bit errors if non-zero x^k and x^0 terms
 - All 2-bit errors if C(x) has a factor with at least three terms
 - Any odd number of errors if C(x) has $(x + 1)$ as a factor
 - Any burst error < k bits

- There are standardized polynomials of different degree that are known to catch many errors
 - Ethernet CRC-32:
 `100000100110000010001110110110111`
Reed-Solomon / BCH Codes

- Developed to protect data on magnetic disks
- Used for CDs and cable modems too
- Property: $2t$ redundant bits can correct $\leq t$ errors
- Mathematics somewhat more involved ...

Key Concepts

- Redundant bits are added to messages to protect against transmission errors.
- Two recovery strategies are retransmissions (ARQ) and error correcting codes (FEC)
- The Hamming distance tells us how much error can safely be tolerated.