
Structured and Unstructured
Peer-to-Peer Computing

Peer-to-Peer Computing

 Quickly grown in popularity:
 Dozens or hundreds of file sharing applications
 In 2004:

• 35 million adults used P2P networks – 29% of all Internet
users in USA

• 35% of Internet traffic is from BitTorrent
 Upset the music industry, drawn college students, web

developers, recording artists and universities into court

 But P2P is not new and is probably here to stay

 P2P is simply the next iteration of scalable distributed systems

What is P2P?

 Peers serve as both clients and servers
 Eliminates or minimizes the need for a centralized node

 P2P has a rich history
 Original Internet was a p2p system:

 The original ARPANET connected UCLA, Stanford
Research Institute, UCSB, and Univ. of Utah

 No routing infrastructure, just connected by phone
lines

 Computers also served as routers

P2P Systems

 File Sharing
 Napster
 Gnutella
 BitTorrent

 Research systems
 Distributed Hash Tables
 Content distribution networks

 Collaborative computing:
 SETI@Home project
 Human genome mapping
 Intel NetBatch: 10,000 computers in 25 worldwide sites for

simulations, saved about 500million

Topic Outline

 Unstructured paradigm for p2p computing
 Centralized Database: Napster
 Query Flooding: Gnutella
 Intelligent Query Flooding: Freenet
 Swarming exchange: BitTorrent

 Structured paradigm for p2p computing
 Distributed Hash Tables

The Lookup Problem

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

The Lookup Problem

 Common Primitives:
 Join: how does a peer begin participating?
 Publish: how does a peer advertise a file?
 Search: how does a peer find a file?
 Fetch: how does a peer retrieve a file?

Centralized Database: Napster

 Shawn Fanning a freshman from NorthEastern develops
Napster in May 1999

 Uses a centralized database
 RIAA sues Napster in December 1999
 Napster peaked at 1.5 million simultaneous users and

2.79 billion files in Feb 2001
 In July 2001, Napster is shut down

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,
 123.2.21.23)
...

123.2.21.23

Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18

Napster: Discussion

 Pros:

 Simple
 Search scope is O(1)
 Controllable (pro or con?)

 Cons:

 Server maintains O(N) State
 Server does all processing
 Single point of failure

Query Flooding: Gnutella

 On March 14th 2000, J. Frankel and T. Pepper from
AOL’s Nullsoft division (also the developers of the
popular Winamp mp3 player) released Gnutella

 Within hours, AOL pulled the plug on it

 Quickly reverse-engineered and soon many other
clients became available: Bearshare, Morpheus,
LimeWire, etc.

 In 2001, many protocol enhancements including
“ultrapeers”

I have file A.

I have file A.

Where is file A?

Query

Reply

Gnutella: Search

Gnutella: Discussion

 Pros:
 Fully de-centralized
 Search cost distributed

 Cons:
 Search scope is O(N)
 Search time is O(???)
 Nodes leave often, network unstable

Aside: Search Time?

Aside: All Peers Equal?

56kbps Modem

10Mbps LAN

1.5Mbps DSL

56kbps Modem
56kbps Modem

1.5Mbps DSL

1.5Mbps DSL

1.5Mbps DSL

Aside: Network Resilience

Partial Topology Random 30% die Targeted 4% die

from Saroiu et al., MMCN 2002

Flooding: FastTrack (aka Kazaa)

 Modifies the Gnutella protocol into two-level hierarchy
 Supernodes

 Nodes that have better connection to Internet
 Act as temporary indexing servers for other nodes
 Help improve the stability of the network

 Standard nodes
 Connect to supernodes and report list of files

 Search
 Broadcast (Gnutella-style) search across supernodes

 Disadvantages
 Kept a centralized registration prone to law suits

Freenet: Smart Routing

 In 1999, I. Clarke started the Freenet project
 Basic Idea:

 Employ Internet-like routing on the overlay
network to publish and locate files

 Additional goals:
 Provide anonymity and security
 Make censorship difficult

Freenet: Routing Tables

 id – file identifier (e.g., hash of file)
 next_hop – another node that stores the file id
 file – file identified by id being stored on the local node

 Forwarding of query for file id

 If file id stored locally, then stop
• Forward data back to upstream requestor

 If not, search for the “closest” id in the table, and
forward the message to the corresponding
next_hop

 If data is not found, failure is reported back
• Requestor then tries next closest match in routing

table

id next_hop file

…
…

Freenet: Routing

 4 n1 f4
12 n2 f12
 5 n3

 9 n3 f9

 3 n1 f3
14 n4 f14
 5 n3

14 n5 f14
13 n2 f13
 3 n6

n1 n2

n3

n4

 4 n1 f4
10 n5 f10
 8 n6

n5

query(10)

1

2

3

4

4’

5

Freenet: Overview

 Routed Queries:

 Search: route query for file id toward the closest node id

 Fetch: when query reaches a node containing file id, it
returns the file to the sender through the intermediate
nodes

• Update routing table entries

 Publish: route file contents toward the file id. File is
stored at node with id closest to file id

Freenet: Routing Properties

 “Close” file ids tend to be stored on the same node
 Why? Publications of similar file ids route toward the same

place
 Network tend to be a “small world”

 Small number of nodes have large number of neighbors
(i.e., ~ “six-degrees of separation”)

 Consequence:
 Most queries only traverse a small number of hops to find

the file

Freenet: Discussion

 Pros:
 Intelligent routing makes queries relatively short
 Search scope small (only nodes along search path

involved); no flooding
 Anonymity properties may give you “plausible deniability”

 Cons:
 Still no provable guarantees!
 Anonymity features make it hard to measure, debug

BitTorrent: Swarming Exchange

 In 2002, B. Cohen debuted BitTorrent
 Key Motivation:

 Popularity exhibits temporal locality (Flash Crowds)
 E.g., Slashdot effect, CNN on 9/11, new movie/game

release

 Previous p2p systems had the problem with free-riding
 70% of Gnutella users didn’t contribute
 Used “tit-for-tat” after breaking up a file into blocks

Overview

 Focused on Efficient Fetching, not Searching (out-of-band):

 Distribute the same file to all peers
 Single publisher, multiple downloaders

 Swarming:
 Join: contact centralized “tracker” server, get a list of

peers.
 Fetch: Download chunks of the file from your peers.

Upload chunks you have to them.

BitTorrent: Publish/Join

Seed

BitTorrent: Fetch

BitTorrent: Sharing Strategy

 Employ “Tit-for-tat” sharing strategy
 “I’ll share with you if you share with me”
 Be optimistic: occasionally let freeloaders download

• Otherwise no liveness guarantees
• Also allows you to discover better peers to download from

when they reciprocate

BitTorrent: Summary

 Pros:
 Works reasonably well in practice
 Gives peers incentive to share resources; avoids

freeloaders
 Cons:

 Peer selection is crucial
 Central tracker server needed to bootstrap swarm

Topic Outline

 Unstructured paradigm for p2p computing
 Centralized Database: Napster
 Query Flooding: Gnutella
 Intelligent Query Flooding: Freenet
 Swarming exchange: BitTorrent

 Structured paradigm for p2p computing
 Distributed Hash Tables

Distributed Hash Tables (DHT):
History

 In 2000-2001, academic researchers jumped on to the P2P
bandwagon

 Motivation:
 Frustrated by popularity of all these “half-baked” P2P apps.

We can do better! (so they said)
 Guaranteed lookup success for files in system
 Provable bounds on search time
 Provable scalability to millions of node

 Hot topic in networking ever since

DHT: Overview

 Abstraction: a distributed “hash-table” (DHT) data structure:
 put(id, item);
 item = get(id);

 Implementation: nodes in system form an interconnection
network
 Can be Ring, Tree, Hypercube, Butterfly Network, ...

DHT: Example - Chord

 Associate with each node and file a unique id in an uni-
dimensional space (a Ring)
 E.g., pick from the range [0...2m]
 Usually the hash of the file or IP address

 Properties:
 Routing table size is O(log N) , where N is the total number

of nodes
 Guarantees that a file is found in O(log N) hops

from MIT in 2001

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

DHT: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

DHT: Chord “Finger Table”

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

 Entry i in the finger table of node n is the first node that succeeds or
equals n + 2i

 In other words, the ith finger points 1/2n-i way around the ring

DHT: Chord Join

 Assume an identifier space [0..8]

 Node n1 joins

0
1

2

3
4

5

6

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

DHT: Chord Join

 Node n2 joins
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

DHT: Chord Join

 Nodes n0, n6 join
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

DHT: Chord Join

 Nodes:
n1, n2, n0, n6

 Items:
f7, f1 0

1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table
7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

7

DHT: Chord Routing

 Upon receiving a query for item
id, a node:

 Checks whether stores the item
locally

 If not, forwards the query to the
largest node in its successor
table that does not exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

DHT: Chord Summary

 Routing table size?
 Log N fingers

 Routing time?
 Each hop expects to 1/2 the distance to the

desired id => expect O(log N) hops.

 What is good/bad about Chord?

