This Lecture

- IP Addressing
  - Hierarchy (prefixes, class A, B, C, subnets)
- Interdomain routing
Scalability Concerns

- Routing burden grows with size of an inter-network
  - Size of routing tables
  - Volume of routing messages
  - Amount of routing computation

- To scale to the size of the Internet, apply:
  - Hierarchical addressing
  - Use of structural hierarchy
  - Route aggregation

IP Addresses

- Reflect location in topology; used for scalable routing
  - Unlike “flat” Ethernet addresses

- Interfaces on same network share prefix
  - Prefix administratively assigned (IANA or ISP)
  - Addresses globally unique

- Routing only advertises entire networks by prefix
  - Local delivery in a single “network” doesn’t involve router
Getting an IP address

- Old fashioned way: sysadmin configured each machine

- Dynamic Host Configuration Protocol (DHCP)
  - One DHCP server with the bootstrap info
    - Host address, gateway address, subnet mask, ...
    - Find it using broadcast
  - Addresses may be leased; renew periodically

- “Stateless” Autoconfiguration (in IPv6)
  - Get rid of server – reuse Ethernet addresses for lower portion of address (uniqueness) and learn higher portion from routers

IPv4 Address Formats

- 32 bits written in “dotted quad” notation, e.g., 18.31.0.135
IPv6 Address Format

- 128 bits written in 16 bit hexadecimal chunks
- Still hierarchical, just more levels

| 001 | RegistryID | ProviderID | SubscriberID | SubnetID | InterfaceID |

Updated Forwarding Routine

- Used to be “look up destination address for next hop”

- Now addresses have network and host portions:
  - Source host:
    - if destination network is the same as the host network, then deliver locally (without router)
    - Otherwise send to the router
  - Intermediate router:
    - look up destination network in routing table to find next hop and send to next router.
    - If destination network is directly attached then deliver locally.

- (Note that it will get a little more complicated later)
Subnetting – More Hierarchy

- Split up one network number into multiple physical networks
- Helps allocation efficiency -- can hand out subnets
- Rest of internet does not see subnet structure
  - subnet is purely internal to network
  - aggregates routing info

<table>
<thead>
<tr>
<th>Network number</th>
<th>Host number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class B address</td>
<td></td>
</tr>
<tr>
<td>111111111111111111111111</td>
<td>00000000</td>
</tr>
</tbody>
</table>

Subnet mask (255.255.255.0)

<table>
<thead>
<tr>
<th>Network number</th>
<th>Subnet ID</th>
<th>Host ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subnetted address</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subnet Example

- Subnet mask: 255.255.255.128
  - Subnet number: 128.96.34.0
    - 128.96.34.1
    - 128.96.34.129
    - 128.96.34.139

- Subnet mask: 255.255.255.0
  - Subnet number: 128.96.34.0
    - 128.96.33.1

- Subnet mask: 255.255.255.128
  - Subnet number: 128.96.33.0
    - 128.96.33.14
    - 128.96.33.140
CIDR (Supernetting)

- CIDR = Classless Inter-Domain Routing
- Generalize class A, B, C into prefixes of arbitrary length; now must carry prefix length with address
- Aggregate adjacent advertised network routes
  - e.g., ISP has class C addresses 192.4.16 through 192.4.31
  - Really like one larger 20 bit address class ...
  - Advertise as such (network number, prefix length)
  - Reduces size of routing tables
- But IP forwarding is more involved
  - Based on Longest Matching Prefix operation

CIDR Example

- X and Y routes can be aggregated because they form a bigger contiguous range.
- But aggregation isn’t always possible.
  - can only aggregate power of 2
IP Forwarding Revisited

- Routing table now contains routes to “prefixes”
  - IP address and length indicating what bits are fixed

- Now need to “search” routing table for longest matching prefix, only at routers
  - Search routing table for the prefix that the destination belongs to, and use that to forward as before
  - There can be multiple matches; take the longest prefix

- This is the IP forwarding routine used at routers.

Announcements

- Midterm exam
  - Open-book, open notes
  - Include TCP flow control (but not congestion control)
- Stef done grading with homeworks
- My office hours for this week:
  - Today 10:30-11:30
  - Tuesday: 4-6
Structure of the Internet

- Inter-domain versus intra-domain routing

You at work

Large corporation

Peering point

"Consumer" ISP

Small corporation

Backbone service provider

Peering point

"Consumer" ISP

You at home

Inter-Domain Routing

- Network comprised of many Autonomous Systems (ASes) or domains
- To scale, use hierarchy: separate inter-domain and intra-domain routing
- Also called interior vs exterior gateway protocols (IGP/EGP)
  - IGP = RIP, OSPF
  - EGP = EGP, BGP
Inter-Domain Routing

- Border routers summarize and advertise internal routes to external neighbors and vice-versa
- Border routers apply policy
- Internal routers can use notion of default routes
- Core is "default-free"; routers must have a route to all networks in the world

Border Gateway Protocol (BGP-4)

- Features:
  - Path vector routing
  - Application of policy
  - Operates over reliable transport (TCP)
  - Uses route aggregation (CIDR)
**Path Vectors**

- Similar to distance vector, except send entire paths
  - e.g. 321 hears [7,12,44]
  - stronger avoidance of loops
  - supports policies (later)

- Modulo policy, shorter paths are chosen in preference to longer ones
- Reachability only – no metrics

**An Ironic Twist on Convergence**

- Recently, it was realized that BGP convergence can undergo a process analogous to count-to-infinity!

AS 4 uses path 4 1 X. A link fails and 1 withdraws 4 1 X.
So 4 uses 4 2 1 X, which is soon withdrawn, then 4 3 2 1 X, ...
Result is many invalid paths can be explored before convergence
Policies

- Choice of routes may depend on owner, cost, AUP, ...
  - Business considerations
- Local policy dictates what route will be chosen and what routes will be advertised!
  - e.g., X doesn’t provide transit for B, or A prefers not to use X

Simplified Policy Roles

- Providers sell Transit to their customers
  - Customer announces path to their prefixes to providers in order for the rest of the Internet to reach their prefixes
  - Providers announce path to all other Internet prefixes to customer C in order for C to reach the rest of the Internet
- Additionally, parties Peer for mutual benefit
  - Peers A and B announce path to their customer’s prefixes to each other but do not propagate announcements further
  - Peering relationships aren’t transitive
  - Tier 1s peer to provide global reachability
Multi-Homing

- Connect to multiple providers for reliability, load sharing

- Customer can choose the best outgoing path from any of the announcements heard from its providers
  - Easy to control outgoing traffic, e.g., for load balancing
  - Less control over what paths other parties will use to reach us
    - Both providers will announce that they can reach to the customer
    - Rest of Internet can choose which path to take to customer
      - Hard for the customer to influence this

Impact of Policies – Example

- Early Exit / Hot Potato
  - “if it’s not for you, bail”

- Combination of best local policies not globally best

- Side-effect: asymmetry
Operation over TCP

- Most routing protocols operate over UDP/IP
- BGP uses TCP
  - TCP handles error control; reacts to congestion
  - Allows for incremental updates
- Issue: Data vs. Control plane
  - Shouldn’t routing messages be higher priority than data?

Key Concepts

- Internet is a collection of Autonomous Systems (ASes)
  - Policy dominates routing at the AS level
- Structural hierarchy helps make routing scalable
  - BGP routes between autonomous systems (ASes)