
CSE 461: Sliding Windows & ARQ

Next Topic

We begin on the Transport layer 

Focus
How do we send information 
reliably?

Topics
The Transport layer
Acknowledgements and
retransmissions (ARQ)

Sliding windows

Physical
Data Link
Network

Transport
Session

Presentation
Application



The Transport Layer

Builds on the services of the Network layer

Communication between processes running on hosts
Naming/Addressing

Stronger guarantees of message delivery
Reliability

Example – Common Properties

TCP
Connection-oriented
Multiple processes
Reliable byte-stream 
delivery

In-order delivery
Single delivery
Arbitrarily long messages

Synchronization
Flow control
Congestion control

IP
Datagram oriented
Lost packets
Reordered packets
Duplicate packets
Limited size packets



What does it mean to be “reliable”

How can a sender “know” the sent packet was received?
sender receives an acknowledgement

How can a receiver “know” a received packet was sent?
sender includes sequence number, checksum

Do sender and receiver need to come to consensus on what is 
sent and received?

When is it OK for the receiver’s TCP/IP stack to deliver the 
data to the application?

Internet Transport Protocols

UDP
Datagram abstraction between processes
With error detection

TCP
Bytestream abstraction between processes
With reliability
Plus congestion control (next week)

SrcPort DstPort

Length Checksum

Data

0 16 31



Automatic Repeat Request (ARQ)

Packets can be corrupted or lost. How do we add reliability?
Acknowledgments (ACKs) and retransmissions after a timeout
ARQ is generic name for protocols based on this strategy

Sender Receiver

Frame

ACKTi
m

eo
ut

T i
m

e

Sender Receiver

Frame

Ti
m

eo
ut

Frame

ACKTi
m

eo
ut

The Need for Sequence Numbers

In the case of ACK loss (or poor choice of timeout) 
the receiver can’t distinguish this message from the 
next

Need to understand how many packets can be 
outstanding and number the packets; here, a 
single bit will do

Sender Receiver

Frame

ACKTi
m

eo
ut

Frame

ACKTi
m

eo
ut

Sender Receiver

Frame

ACKTi
m

eo
ut

Frame

ACKTi
m

eo
ut



Stop-and-Wait

Only one outstanding 
packet at a time

Also called alternating 
bit protocol

0

1

0

1

Sender Receiver

0

1

1

0

Limitation of Stop-and-Wait

Lousy performance if trans. delay << prop. delay
Max BW: B
Actual BW:  M/2D
• Example: B = 100Mb/s, M=1500Bytes, 

D=50ms
• Actual BW = 1500Bytes/100ms --> 15000 

Bytes/s --> ~100Kb/s
• 100Mb vs 100Kb?

Data

Ack



More BW Please

Want to utilize all available bandwidth
Need to keep more data “in flight”
How much? Remember the bandwidth-delay 
product?

Leads to Sliding Window Protocol
“window size” says how much data can be sent 
without waiting for an acknowledgement

Sliding Window – Sender

Window bounds outstanding data
Implies need for buffering at sender
• Specifically, must buffer unack’ed data

“Last” ACK applies to in-order data
Need not buffer acked data

Sender maintains timers too
Go-Back-N: one timer, send all unacknowledged on 
timeout
Selective Repeat: timer per packet, resend as needed

≤Send Window

“Last” ACK’ed Last Sent

… …Sender:



Sliding Window – Timeline

Sender Receiver

Ti
m

e

Data

Ack

•Receiver ACK choices:
–Individual

•Each packet acked
–Cumulative (TCP)

•Ack says “got everything up 
to X-1…” 
•really, “my ack means that 
the next byte I am expecting 
is X”

–Selective (newer TCP)
•Ack says “I got X through Y”

– Negative
•Ack says “I did not get X”

Sliding Window – Receiver

Receiver buffers too:
data may arrive out-of-order
or faster than can be consumed by receiving 
process

No sense having more data on the wire than can be buffered 
at the receiver.

In other words, receiver buffer size should limit 
the sender’s window size 

<= Receive Window

Last byte read
(by app)

Largest Acceptable

… …Receiver:



Flow Control

Sender must transmit data no faster than it can be consumed by 
receiver

Receiver might be a slow machine
App might consume data slowly

Accomplish by adjusting the size of sliding window used at the 
sender

sender adjusts based on receiver’s feedback about available 
buffer space
the receiver tells the sender an “Advertised Window”

<= Receive Window

Last byte read Largest Acceptable

… …

Sender and Receiver Buffering

Sending application

LastByteWritten

LastByteSentLastByteAcked

= available buffer

LastByteAcked <= LastByteSent
LastByteSent <= LastByteWritten

Older bytes Newer bytes

These bytes 
have
not shown 
up yet.

Receiving application

LastByteRead

LastByteRcvdNextByteExpected

= buffer in use

LastByteRead < NextByteExpected
NextByteExpected <= LastByteRvcd+1

== if data arrives in order
else start of first gap.

These bytes 
have gone 
to the app.

Older bytes Newer bytes



Flow Control

To accomplish this, receiver advertises the following window size:
• AdvertisedWindow = MaxRcvBuffer - ((NextByteExpected - 1) - LastByteRead )
• “All the buffer space minus the buffer space that’s in use.”

MaxRcvBufferReceiver:

LastByteRcvd

NextByteExpected

LastByteRead

Sender: MaxSndBuffer

LastByteWritten

LastByteSent

LastByteAcked

Receiver’s goal:  always ensure that    LastByteRcvd - LastByteRead <= MaxRcvBuffer

• in other words, ensure it never needs to buffer more than MaxRcvBuffer data

Flow control on the receiver

As data arrives:
receiver acknowledges it so long as all preceding bytes 
have also arrived
ACKs also carry a piggybacked AdvertisedWindow
So, an ACK tells the sender:
1. All data up to the ACK’ed seqno has been received
2. How much more data fits in the receiver’s buffer, 

as of receiving the ACK’ed data

AdvertisedWindow:
shrinks as data is received
grows as receiving app. reads the data from the buffer



Flow Control On the Sender

OK to send that which there is room for, which is that which was advertised (AdvertisedWindow)
minus that which I’ve already sent since receiving the last advertisement.

MaxRcvBufferReceiver:

LastByteRcvd

NextByteExpected

LastByteRead

Sender: MaxSndBuffer

LastByteWritten

LastByteSent

LastByteAcked

Sender’s goal:  always ensure that  LastByteSent - LastByteAcked <= AdvertisedWindow

• in other words, don’t sent that which is unwanted

Notion of “EffectiveWindow”:   how much new data it is OK for sender to currently send
• EffectiveWindow = AdvertisedWindow - (LastByteSent - LastByteAcked)

Sending Side

As acknowledgements arrive:
advance LastByteAcked
update AdvertisedWindow
calculate new EffectiveWindow
• If  EffectiveWindow > 0,  it is OK to send more data

One last detail on the sender:
sender has finite buffer space as well
• LastByteWritten - LastByteAcked <= MaxSendBuffer
OS needs to block application writes if buffer fills
• i.e., block    write(y)    if 

(LastByteWritten - LastByteAcked) + y > 
MaxSendBuffer



Example – Exchange of Packets

SEQ=1

SEQ=2

SEQ=3
SEQ=4

ACK=2; WIN=3

ACK=3; WIN=2

ACK=4; WIN=1

ACK=5; WIN=0

Receiver has 
buffer of size 4 
and application 
doesn’t readStall due to 

flow control 
here

T=1

T=2

T=3

T=4

T=5

T=6

Example – Buffer at Sender

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

21 3 4 5 6 7 8 9

T=1

T=2

T=3

T=4

T=5

T=6

=acked

=sent

=advertised



Packet Format

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

16 bit window size gets
Cramped with large
Bandwidth x delay

16 bits --> 64K
BD ethernet: 122KB
STS24 (1.2Gb/s): 14.8MB

32 bit sequence number
must not wrap around faster
than the maximum packet
lifetime.  (120 seconds)

-- 622Mb/s link: 55 seconds

Sliding Window Functions

Sliding window is a mechanism
It supports multiple functions:

Reliable delivery 
• If I hear you got it, I know you got it.
• ACK (Ack # is “next byte expected”)

In-order delivery
• If you get it, you get it in the right order. 
• SEQ # (Seq # is “the byte this is in the sequence”)

Flow control
• If you don’t have room for it, I won’t send it.
• Advertised Receiver Window
• AdvertisedWindow is amount of free space in 

buffer



Key Concepts

Transport layer allows processes to communicate 
with stronger guarantees, e.g., reliability
Basic reliability is provided by ARQ mechanisms

Stop-and-Wait through Sliding Window plus 
retransmissions


