Last time...

- Taxonomy of application needs
- Network support for Quality of Service
 - IntServ (per-flow guarantees)
 - Traffic specification: Token bucket model
 - Reservation protocol: RSVP
 - Scheduling policy: Fair Queuing
- “Lectures are going at a good pace now”
- “Way too much covered in one day”

Questions from last time...

- Confused on RSVP
- Is QoS deployed? How is it used?
 - Not yet widely deployed (see RFC 2990)
- How do current multicast implementations work?
 - LAN: Using link layer broadcast
 - WAN: Some routers, but not all, support multicast.
 Read about the MBone on p. 344-5
- Start a final review sheet soon?

This time...

- Wrap up resource allocation
- Growth and Evolution
 - How do we cope as networks grow and evolve over time?
- Today
 - How can we make routing scale to the Internet?
IETF Differentiated Services

- A more coarse-grained approach to QOS
 - Packets are marked as belonging to a small set of services, e.g., premium or best-effort
- Marking is enforced at administrative boundaries
 - Your ISP marks 10Mbps (say) of your traffic as premium depending on your service level agreement (SLA)
 - SLA is a business contract that changes infrequently
- Core routers understand only the different service classes
 - Might separate classes with WFQ, but not separate flows

Two-Tiered Architecture

Mark at Edge routers
(per flow state, complex)

Core routers stay simple
(no per-flow state, few classes)

Growth and Evolution

- How do we cope as networks grow and evolve?
 - IP and heterogeneity
 - Routing, addressing, and naming
 - Overlay networks
 - Proxies, load balancing, and content distribution networks

Internet Growth
Routing Scalability

• What problems would we face if we used link state routing across the entire Internet today?

Routing Hierarchy

• Divide Internet into Autonomous Systems
 – Also known as administrative domains
 – Each has a globally unique AS number
• Route hierarchically
 – Within an autonomous system
 – Between autonomous systems

Inter-Domain Routing

• Border routers summarize and advertise internal routes to external neighbors and vice-versa
• Default route – just send to the nearest border router!

Exterior Gateway Protocol (EGP)

• First major inter-domain routing protocol (no longer in use)
• Constrained Internet to tree structure
Structure of the Internet Today

Border Gateway Protocol (BGP-4)

- Inter-domain routing protocol used in the Internet today

- Features:
 - Path vector routing
 - Application of policy
 - Operates over reliable transport (TCP)
 - Uses route aggregation (CIDR) (next time…)

Path Vector Routing

- Similar to distance vector, but send entire paths
 - e.g. 321 hears [7,12,44]
 - Stronger avoidance of loops
 - Explicit route withdrawal
 - Supports policy-based routing

- No link costs
- Prefer paths with fewer hops – modulo policy

An Ironic Twist on Convergence

- Recently, it was realized that BGP convergence can undergo a process analogous to count-to-infinity!

 - AS 4 uses path 4 1 X. A link fails and 1 withdraws 4 1 X.
 - So 4 uses 4 2 1 X, which is soon withdrawn, then 4 3 2 1 X, …
 - Many invalid paths can be explored before convergence
Policies

- Choice of routes depends on business relationships and economic considerations.
- Local policy dictates which routes will be chosen and which routes will be advertised.

Transit Relationships

- **Provider → Customer:** “You can reach the rest of the Internet through me.”
- **Customer → Provider:** “Here are paths to all of my IP address blocks.”
- **Provider → everyone else:** “Here are paths to reach my customers’ IP address blocks.”

Multi-Homing

- Connect to multiple providers for reliability.
- For each IP address block, choose best path announced by any provider:
 - Easy to control outgoing traffic, e.g., for load balancing.
- Advertise our address blocks to both providers:
 - Less control over what paths other parties will use to reach us.

Peer Relationships

- Peers exchange traffic for mutual benefit.
- Peers A and B announce paths to their customers’ IP address blocks to each other:
 - Lets A & B avoid paying transit provider for this traffic!
 - Do not propagate announcements further.
 - Peering is not transitive.
With whom should I peer?

- Backbone ISPs have no transit provider
 - Must peer to provide global reachability
- Economics
 - How much traffic is there between us?
 - Would we both save money on transit by peering?
 - Do we already have a peering point in common?
- Politics
 - Do we have an existing business relationship?
 - Do I trust you to be competent and responsive?

Impact of Policies – Example

- Early Exit / Hot Potato
 - If it’s not for me, get rid of it as soon as possible!
- Best local policies don’t always lead to best global routes
- Side-effect: route asymmetry

Operation over TCP

- Intradomain routing protocols operate directly over IP
- BGP uses TCP
 - TCP handles retransmission and reacts to congestion
 - Allows for incremental updates
- Issue: Data vs. Control plane
 - Shouldn’t routing messages be higher priority than data?

Key Concepts

- Differentiated Services provides coarse quality of service guarantees
- Internet is a collection of Autonomous Systems (ASes)
 - Structural hierarchy helps make routing scalable
 - Policy dominates routing at the AS level