Announcements

- Fishnet 2 due Wednesday
- Demo in section on Thursday

Last time...

- Heterogeneity: How can we support a range of media & applications?
 - IP as a layer of indirection
 - Layering revisited
 - The Internet hourglass

Internet vs. OSI Protocol Models
Hourglass Analogies

- Key idea: A central abstraction that makes it easier to cope with heterogeneity at the top & bottom.

```
Dishes; meals          Ingredients
  Cooking             Investors
                      Machine Code
```

“IP over everything, everything over IP”

- A Standard for the Transmission of IP Datagrams on Avian Carriers

- Pigeon-powered Internet takes flight

- The Bongo Project
 - http://eagle.auc.ca/~dreid/

This time...

- More on IP and the network layer

- Topics:
 - IP in the protocol stack
 - IP header format
 - Error reporting (ICMP)
 - Path MTU problem

The Network Layer

- Job is to provide end-to-end data delivery between hosts on an internetwork
 - Forwarding
 - Routing
In terms of protocol stacks

In terms of packet formats

In terms of protocol stacks

Internet Protocol (IP)

- IP (RFC791) defines a “best effort” service
 - May be loss, reordering, duplication, and errors!
 - Currently IPv4 (IP version 4)
 - IPv6 on the way

- Global, hierarchical address scheme
 - Distinct from link layer addresses
 - 32 bits in IPv4 address; 128 bits in IPv6 address
 - More on this later!

IPv4 Packet Format
IPv4 Header Fields ...

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>19</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version HLen TOS</td>
<td>Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifier for Fragments Flags Fragment Offset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td>Protocol Checksum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options (variable) Pad (variable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPv4 Header Fields ...

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>19</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version HLen TOS</td>
<td>Length</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identifier for Fragments Flags Fragment Offset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td>Protocol Checksum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options (variable) Pad (variable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IPv4 Header Fields …

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>19</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ver</td>
<td>HLen</td>
<td>TOS</td>
<td>Length</td>
<td>ID</td>
<td>Frag Offset</td>
</tr>
<tr>
<td>TTL</td>
<td>Protocol</td>
<td>Checksum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options (variable)</td>
<td>Pad (variable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPv4 Header Fields …

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>19</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ver</td>
<td>HLen</td>
<td>TOS</td>
<td>Length</td>
<td>ID</td>
<td>Frag Offset</td>
</tr>
<tr>
<td>TTL</td>
<td>Protocol</td>
<td>Checksum</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination Address</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Options (variable)</td>
<td>Pad (variable)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ICMP

- ICMP =

- Companion to IP – required functionality

- Used for error and information reporting:
 -
 -

ICMP Generation

Error during forwarding!
Common ICMP Messages

- Destination unreachable
 - “Destination” can be network, host, protocol, or port
- Redirect
 - To shortcut circuitous routing
- TTL Expired
 - Used by the traceroute program
- Echo request/reply
 - Used by the ping program

ICMP Restrictions

- Want to avoid overloading the network with ICMP packets
- Don’t generate ICMP error in response to:
 -
 -
 -
- ICMP messages are often rate-limited too.

MTU problem

- Different networks may have different maximum frame sizes (MTUs)
 - e.g.,
 Ethernet 1.5K,
 FDDI 4.5K
- Don’t know beforehand if packet will be too big for path

MTU strategies

- What can we do to make sure packets “fit” on each network?
Fragment Fields

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>19</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version</td>
<td>HLen</td>
<td>TOS</td>
<td>Length</td>
<td>Identifier for Fragments</td>
<td>Flags</td>
</tr>
<tr>
<td>TTL</td>
<td>Protocol</td>
<td>Checksum</td>
<td>Source Address</td>
<td>Destination Address</td>
<td></td>
</tr>
<tr>
<td>Options (variable)</td>
<td>Pad (variable)</td>
<td>Data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fragmentation consequences

- Loss of any fragments causes
- Reassemble at destination
 - Need time out in case fragments are lost
- Fragmentation is a burden for routers

Path MTU Discovery

- Path MTU is the smallest MTU along path
 - Packets less than this size don’t get fragmented
- Avoid fragmentation by having hosts learn path MTUs
- Hosts send packets, routers return error if too large
 - Hosts discover limits, can fragment at source
 - Reassembly at destination as before
- Learned lesson from IPv4, streamlined in IPv6

Key Concepts

- The IP protocol provides end-to-end data delivery on the Internet.
- ICMP provides error reporting.
- The Path MTU problem is an important issue resulting from heterogeneity.
- Next time: Sockets & applications