CSE/EE 461
HTTP and the Web

Last Time …

- The Transport Layer
- Focus
 - How does TCP share bandwidth?
- Topics
 - AIMD
 - Slow Start
 - Fast Retransmit / Fast Recovery
This Lecture

- HTTP and the Web (but not HTML)

- Focus
 - How do Web transfers work?

- Topics
 - HTTP, HTTP1.1
 - Performance Improvements
 - Protocol Latency
 - Caching

Web Protocol Stacks

- To view the URL http://server/page.html the client makes a TCP connection to port 80 of the server, by its IP address, sends the HTTP request, receives the HTML for page.html as the response, repeats the process for inline images, and displays it.
HTTP Request/Response

HTTP is a tiny, text-based language
The GET method requests an object
There are HTTP headers, like “Content-Length:”, etc.
Try “telnet server 80” then “GET index.html”
Other methods: POST, HEAD,… RFC XXX for details
HTTP Request/Response in Action

Problem is that:
- Web pages are made up of many files
 - Most are very small (< 10k)
- files are mapped to connections
- For each file
 - Setup/Teardown
 - Time-Wait table bloat
 - 2RTT “first byte” latency
 - Slow Start+ AIMD Congestion Avoidance

The goals of HTTP and TCP protocols are not aligned.
- Implications

TCP Behavior for Short Connections Over Slow Networks

Figure 3-2: Throughput vs. connection length, RTT = 70 ms

RTT=70ms

Figure 3-2 shows that, in the remote case, using a TCP connection to transfer only 2 kbytes results in a throughput less than 10% of best-case values. Even a 20 kbyte transfer achieves only about 50% of the throughput available with a reasonable window size. This reduces throughput considerably into increased latency for frequent retrieval. The figure also shows that, for this 70 ms RTT, one of too small a window size limits the throughput no matter how many bytes are transferred.
It’s the RTT

RTT = 1 ms

No slow start here (ULTRIX LAN)

HTTP1.1: Persistent Connections

Bright Idea: Use one TCP connection for multiple page downloads (or just HTTP methods)

Q: What are the advantages?

Q: What are the disadvantages?

– Application layer multiplexing
Effect of P-HTTP

![Image size=2544](image1.png)

![Image size=45566](image2.png)

Caching

- It is faster and cheaper to get data that is closer to here than closer to there.
- “There” is the origin server. 2-5 RTT
- “Here” can be:
 - Local browser cache (file system) (1-10ms)
 - Client-side proxy (institutional proxy) (10-50)
 - Content-distribution network (CDN -- “cloud” proxies) (50-100)
 - Server-side proxy (reverse proxy @ origin server) (2-5RTT)
Browser Caches

- Bigger win: avoid repeated transfers of the same page
- Check local browser cache to see if we have the page
- GET with If-Modified-Since makes sure it’s up-to-date
- Q: What are the advantages and disadvantages?

Consistency and Caching Directives

- Key issue is knowing when cached data is fresh/stale
 - Otherwise many connections or the risk of staleness
- Browsers typically use heuristics
 - To reduce server connections and hence realize benefits
 - Check freshness once a “session” with GET If-Modified-Since
 - and then assume it’s fresh the rest of the time
 - Possible to have inconsistent data.
- Caching directives provide hints
 - Expires: header is basically a time-to-live
 - Also indicate whether page is cacheable or not
Proxy Caches

- Insert further levels of caching for greater gain
- Share proxy caches between many users (not shown)
 - If I haven’t downloaded it recently, maybe you have
- Your browser has built-in support for this

Proxy Cache Effectiveness

![Graph showing hit rate percentage against cache size (GB)]
Hit Rate Follows Request Rate

Figure 3: Cache hit rate for KOR as a function of cache size for a range of request rates.

Sharing, Not Locality, Drives Effectiveness

Figure 9: Hit rate divided into hits due to sharing and due to locality of a single client.

Figure 10: The percent of a total URLs in a trace requested by two or more clients and the percent of total requests to these shared objects.
The Trends

- HTTP Objects are getting bigger
- But Less important

Next Steps?

- Different types of content (streaming media, XML)
- Content Delivery Networks (caching alternative)
- Security (for all those purchases)
Key Concepts

- HTTP and the Web is just a shim on top of TCP
 - Sufficient and enabled rapid adoption
 - Many “scalability” and performance issues now important