CSE/EE 461 – Lecture 15

Retransmission and Timers

David Wetherall
djw@cs.washington.edu

Last Time …

• More on the Transport Layer

• Focus
 – How do we manage connections?

• Topics
 – Three-Way Handshake
 – Close and TIME_WAIT
This Lecture

• More on the Transport Layer

• Focus
 – How do we decide when to retransmit?

• Topics
 – RTT estimation
 – Karn/Partridge algorithm
 – Jacobson/Karels algorithm

Deciding When to Retransmit

• How do you know when a packet has been lost?
 – Ultimately sender uses timers to decide when to retransmit

• But how long should the timer be?
 – Too long: inefficient (large delays, poor use of bandwidth)
 – Too short: may retransmit unnecessarily (causing extra traffic)
 – A good retransmission timer is important for good performance

• Right timer is based on the round trip time (RTT)
 – Which varies greatly in the wide area (path length and queuing)
Buffers at routers used to absorb bursts when input rate > output
Loss (drops) occur when sending rate is persistently > drain rate

Effects of Early Retransmissions
Congestion Collapse

- In the limit, early retransmissions lead to **congestion collapse**
 - Sending more packets into the network when it is overloaded exacerbates the problem of congestion
 - Network stays busy but very little useful work is being done

- This happened in real life ~1987
 - Led to Van Jacobson’s TCP algorithms, which form the basis of congestion control in the Internet today
 [See “Congestion Avoidance and Control”, SIGCOMM’88]

Estimating RTTs

- Idea: Adapt based on recent past measurements

- Simple algorithm:
 - For each packet, note time sent and time ack received
 - Compute RTT samples and average recent samples for timeout

 - EstimatedRTT = $\alpha \times$ EstimatedRTT + (1 - α) x SampleRTT

 - This is an exponentially-weighted moving average (low pass filter) that smoothes the samples. Typically, $\alpha = 0.8$ to 0.9.
 - Set timeout to small multiple (2) of the estimate
Estimated Retransmit Timer

- Karn/Partridge Algorithm
 - Problem: RTT for retransmitted packets ambiguous
 - Solution: Don’t measure RTT for retransmitted packets and do not relax backed of timeout until valid RTT measurements
Jacobson/Karels Algorithm

- Problem:
 - Variance in RTTs gets large as network gets loaded
 - So an average RTT isn’t a good predictor when we need it most

- Solution: Track variance too.
 - Difference = SampleRTT – EstimatedRTT
 - EstimatedRTT = EstimatedRTT + (δ x Difference)
 - Deviation = Deviation + δ(|Difference| - Deviation)
 - Timeout = µ x EstimatedRTT + φ x Deviation
 - In practice, δ = 1/8, µ = 1 and φ = 4

Estimate with Mean + Variance
Key Concepts

- A good retransmit timer is important for good performance
 - Too long leads to poor performance
 - Too short leads to wasted bandwidth

- An estimated timeout must adapt to Internet queuing
 - High variance at high load