Last Time

- We finished up the Network layer
 - Internetworks (IP)
 - Routing (DV/RIP, LS/OSPF)
 - Scalable addressing/routing (BGP, CIDR)

- It was all about routing: how to provide end-to-end delivery of packets.
This Time

- We begin on the Transport layer

- Focus
 - How do we send information reliably?

- Topics
 - The Transport layer
 - Acknowledgements and retransmissions (ARQ)
 - Sliding windows

The Transport Layer

- Builds on the services of the Network layer

- Communication between processes running on hosts
 - Naming/Addressing

- Stronger guarantees of message delivery
 - Reliability
Example – Common Properties

TCP
- Guaranteed delivery
- In-order delivery
- Single delivery
- Arbitrarily long messages
- Synchronization
- Flow control
- Multiple processes

IP
- Lost packets
- Reordered packets
- Duplicate packets
- Limited size packets

Internet Transport Protocols

- UDP
 - Datagram abstraction between processes
 - With error detection

- TCP
 - Bytestream abstraction between processes
 - With reliability
 - Plus congestion control (later!)
Automatic Repeat Request (ARQ)

- Packets can be corrupted or lost. How do we add reliability?
- Acknowledgments (ACKs) and retransmissions after a timeout
- ARQ is generic name for protocols based on this strategy

The Need for Sequence Numbers

- In the case of ACK loss (or poor choice of timeout) the receiver can’t distinguish this message from the next
 - Need to understand how many packets can be outstanding and number the packets; here, a single bit will do
Stop-and-Wait

- Only one outstanding packet at a time
- Also called alternating bit protocol

Limitation of Stop-and-Wait

- Lousy performance if wire time \ll prop. delay
 - How bad? You do the math
- Want to utilize all available bandwidth
 - Need to keep more data “in flight”
 - How much? Remember the bandwidth-delay product?
- Leads to Sliding Window Protocol
Sliding Window – Sender

- Window bounds outstanding data
 - Implies need for buffering at sender
- “Last” ACK applies to in-order data
- Sender maintains timers too
 - Go-Back-N: one timer, send all unacknowledged on timeout
 - Selective Repeat: timer per packet, resend as needed

Sliding Window – Timeline

Time

Sender

Receiver
Sliding Window – Receiver

- Receiver buffers too:
 - data may arrive out-of-order
 - or faster than can be consumed (flow control)
- Receiver ACK choices:
 - Individual, Cumulative (TCP), Selective (newer TCP), Negative

Sliding Window Functions

- Sliding window is a mechanism
- It supports multiple functions:
 - Reliable delivery
 - In-order delivery
 - Flow control
Flow Control

- Sender must transmit data no faster than it can be consumed by the receiver
 - Receiver might be a slow machine
 - App might consume data slowly

- Implement by adjusting the size of the sliding window used at the sender based on receiver feedback about available buffer space
 - This is the purpose of the Advertised Window field

Sender and Receiver Buffering

- Sending application
 - LastByteWritten
 - TCP
 - LastByteAcked
 - LastByteSent

- Receiving application
 - LastByteRead
 - TCP
 - LastByteRcvd
 - NextByteExpected

[Diagram showing buffer usage with symbols for available buffer and buffer in use]
Example – Exchange of Packets

Receiver has buffer of size 4 and application doesn’t read

Example – Buffer at Sender

T=1

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

T=2

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

T=3

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

T=4

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

T=5

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]

T=6

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\end{array}
\]
Key Concepts

- Transport layer allows processes to communicate with stronger guarantees, e.g., reliability
- Basic reliability is provided by ARQ mechanisms
 - Stop-and-Wait through Sliding Window plus retransmissions