Multicast

Challenge: how do we efficiently send messages to a group of machines?

- Need to revisit all aspects of networking
 - Routing
 - Autonomous systems
 - Address allocation
 - Congestion control
 - Reliable delivery
 - Ordered delivery
Multicast Motivation

- Send data to multiple receivers at once
 - broadcasting, narrowcasting
 - telecollaboration
 - software update
 - group coordination, subcasting
- Send question to unknown receiver
 - resource discovery
 - distributed database
 - anonymous directory services

Multicast Efficiency

- Send data only once down link shared by multiple receivers
Multicast Deployment

- How do we add multicast services to the Internet?
- IP multicast
 - special IP addresses to represent groups of receivers
 - receivers subscribe to specific channels
 - modify routers to support multicast sends
- Overlay network
 - PC routers, forward multicast traffic by tunneling over Internet
 - Works on existing Internet, with no router modifications

IP Multicast Service Model

- Provided by internetwork, with help from LAN
- Best effort delivery (unreliable, unordered, …)
 - Packets addressed to group address (allocated from special range)
- Receivers
 - zero, one or many receivers
 - dynamic -- anyone can join, leave
- Senders
 - Any number of senders -- just send packet to group address
IP Multicast Routing

- How do we distribute packets across thousands of LANs?
 - Each router responsible for its attached LAN
- Reduces to:
 - How do we forward packets to all interested routers? (DVMRP, M-OSPF, MBone)
 - How do hosts declare interest to their routers? (IGMP)

Multicast Routing Approaches

- Broadcast data and prune where there are no members
 - Based on distance vector routing (DVMRP)
- Broadcast membership and compute forwarding tables
 - Based on link state routing (MOSPF)
- Broadcast rendezvous for group addresses
 - Independent of unicast routing (PIM)
Why not Reliable Flooding?

- If haven’t seen a packet before
 - forward it on every link but incoming
 - requires routers to remember each pkt!

Multicast via Spanning Tree

- Send copies along the spanning tree
 - Ensures every host gets a copy
 - Prune tree if no receivers along a branch
Distance Vector Multicast

- Intuition: unicast routing tables form inverse tree from senders to destination
 - why not use backwards for multicast?
 - Various refinements to eliminate useless transfers
- Implemented in DVMRP (Distance Vector Multicast Routing Protocol)

Reverse Path Flooding (RPF)

- Router forwards packet from S iff packet came via shortest path back to S
Redundant Sends

- RPF will forward packet to router, even if it will discard
 - each router gets pkt on all of its input links!
- Each router connected to LAN will broadcast packet

Reverse Path Broadcast (RPB)

- Neighbors exchange distance vector routing tables
 - enables router to know if forwarded multicast packet will be discarded (not on shortest path to S)
- Only send to a neighbor if router is on neighbor’s shortest path back to source
- Only send on a LAN if router is on shortest path back to source
 - break ties arbitrarily
RPB Example

- Router forwards packet from S iff router is on *neighbor’s* shortest path back to S

Truncated RPB

- End hosts tell routers if interested
- Routers forward on LAN iff there are receivers
- Challenges:
 - needs to be robust to router/host failures
 - need to avoid overloading LAN with announcements
Internet Group Management Protocol (IGMP)

- To join, a host multicasts a join request to the LAN, with TTL=1
 - only other hosts, routers on LAN will see request
- Each forwarding router periodically broadcasts a query on the LAN, anyone receiving group?
 - if no one replies (receiver crashed), stop forwarding
- When host gets query, sets random timer
 - When timer expires, multicast join request, TTL=1
 - All other hosts will see the join, stay silent

IGMP (step 1)

- Router (on shortest path back to S) periodically broadcasts a query about group (TTL=1)
IGMP (step 2)

- One group member responds to group with TTL=1, everyone else defers
 - All receivers can listen if anyone does

Reverse Path Multicast (RPM)

- Forward packets only to those areas of the network with receivers
- “Broadcast and prune”
 - Use IGMP to tell if LAN if no members
 - If no children are members, propagate prune to parent in tree
- Assume membership and prune if wrong vs. assume non-membership and explicit join
How does a receiver join?

- What if multicast tree has been pruned, and a receiver joins the multicast in progress?
- Graft (prune cancellation)
 - Routers remember where they sent prunes
 - where multicast traffic came from
 - If child joins, send graft in same direction(s)
- Requires ARQ
 - what if graft is dropped?
 - what if prune is dropped?

Phase 1: Truncated Broadcast
Phase 2: Pruning

Phase 3: Grafting
Phase 4: Steady State

RPM Mechanics

- Data-driven: prune only when data packet arrives
 - Why?
- Periodically time out prunes
 - Why?
- Are loops possible in the multicast routing tree?
Hierarchical Broadcast and Prune

- **Reverse Path Flooding**
 - Discard incoming packet if not from reverse path
 - Multicast incoming packet to all borders

- **Reverse Path Multicast**
 - For each neighbor AS, compute if we’re on its reverse path to source
 - Multicast incoming packets to all border routers for those AS’s
 - Propagate prunes across the AS back towards the source