CSE/EE 461 – Lecture 3

Bits, Links and Frames

David Wetherall
djw@cs.washington.edu

Last Time …

• Protocols, layering and reference models

<table>
<thead>
<tr>
<th>The OSI Model</th>
<th>Sample Protocol Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>“Netscape”</td>
</tr>
<tr>
<td>Presentation</td>
<td>HTTP</td>
</tr>
<tr>
<td>Session</td>
<td>TCP</td>
</tr>
<tr>
<td>Transport</td>
<td>IP</td>
</tr>
<tr>
<td>Network</td>
<td>Ethernet</td>
</tr>
<tr>
<td>Link</td>
<td></td>
</tr>
<tr>
<td>Physical</td>
<td></td>
</tr>
</tbody>
</table>
This Lecture

- Focus: *How do we send a message across a wire?*

- The physical/link layers:
 1. Different kinds of media
 2. Encoding bits
 3. Model of a link
 4. Framing messages

1. Different kinds of media

- **Wire**
 - Twisted pair, e.g., CAT5 UTP, 10 100Mbps, 100m
 - Coaxial cable, e.g, thin-net, 10 100Mbps, 200m
- **Fiber**
 - Multi-mode, 100Mbps, 2km
 - Single mode, 100 2400 Mbps, 40km
- **Wireless**
 - Infra-red, e.g., IRDA, ~1Mbps
 - RF, e.g., 802.11 wireless LANs, Bluetooth (2.4GHz)
 - Microwave, satellite, cell phones, …
Fiber

- Long, thin, pure strand of glass
 - Enormous bandwidth available (terabits)

- Multi-mode allows many different paths, dispersion
- Chromatic dispersion if multiple frequencies

Wireless

- Different frequencies have different properties
- Signals subject to atmospheric/environmental effects
Wires

- Signal subject to:
 - Attenuation (repeaters)
 - Distortion (frequency and delay)
 - Noise (thermal, crosstalk, impulse)

Aside: Bandwidth of a Channel

- EE: Bandwidth (B) (Hz) is the width of the pass-band in the frequency domain
- CS: “Bandwidth” (bps) is the information carrying capacity (C) of the channel

- Shannon showed how they are related by noise, which limits how many signal levels we can safely distinguish.
Model of Channel Distortion

- Behavior of channel on a signal is based on behavior on each component of the signal:
 - $g(\text{signal}) = g(\sum(\text{freq})) = \sum(g'(\text{freq}))$
 - frequency response (amplitude attenuation)
 - phase response (phase shift)
- Measure channel on pure signals
 => predict impact on each component
 => sum to get output

Ex: Decomposing a Square Wave

- Square wave can be decomposed into a sum of sines by a technique called Fourier analysis
Ex: Transmitting a Square Wave

- Higher channel bandwidth passes more components that give successively better representations of the original square wave

![Graphs showing fundamental, 1st + 3rd harmonic, and 5 terms of a square wave](image)

Bandwidth = \(f \) \(3f \) \(5f \)

Nyquist Limit (~1924)

- For a noiseless channel with bandwidth \(B \)
- Symbols will be distorted, and sending too fast leads to Inter-symbol Interference (ISI)

![Diagram showing eye diagram with 1s and 0s](image)

- The maximum rate at which it is possible to send:
 \[R = 2B \text{ symbols/sec} \]
 e.g., 3KHz 6Ksym/sec
Taking Noise into Account

- Noise limits how many signal levels we can safely distinguish between
 - \(S = \text{max signal amp.}, \ N = \text{max noise amp.} \)

- The number of bits per symbol depends on the number of signal levels
 - E.g, 4 levels implies 2 bits / symbol

The Shannon Limit (1948)

- Define Signal to Noise Ratio (SNR):
 \[
 \text{SNR} = 10 \log_{10}(\text{signal} / \text{noise}) \text{ decibels (dB)}
 \]
 e.g, 30 dB means signal 1000 times noise

- For a noisy channel with bandwidth \(B \) (Hz) and given SNR, the maximum rate at which it is possible to send information, the channel capacity, is:
 \[
 C = B \log_2(1 + \text{SNR}) \text{ (bits/sec)}
 \]
 e.g, 3KHz and 30dB SNR 30Kbps
2. Encoding Bits with Signals

- Generate analog waveform (e.g., voltage) from digital data at transmitter and sample to recover at receiver

- We send/recover symbols that are mapped to bits
 - Signal transition rate = baud rate, versus bit rate
- This is baseband transmission … take a signals course!

NRZ and NRZI

- Simplest encoding, NRZ (Non-return to zero)
 - Use high/low voltages, e.g., high = 1, low = 0
- Variation, NRZI (NRZ, invert on 1)
 - Use transition for 1s, no transition for 0s
Clock Recovery

- Problem: How do we distinguish consecutive 0s or 1s?
- If we sample at the wrong time we get garbage ...
- If sender and receiver have exact clocks no problem
 - But in practice they drift slowly
- This is the problem of clock recovery

- Possible solutions:
 - Send separate clock signal expensive
 - Keep messages short limits data rate
 - Embed clock signal in data signal other codes

“Asynchronous” Transmission

- Avoid timing problem by sending short, delimited data with a well-defined beginning
 - E.g., UARTs (typically used to connect your keyboard)
Manchester Coding

- Make transition in the middle of every bit period
 - Low-to-high is 0; high-to-low is 1
 - Signal rate is twice the bit rate
 - Used on 10 Mbps Ethernet

- Advantage: self-clocking
 - clock is embedded in signal, and we re-sync with a phase-locked loop every bit

- Disadvantage: 50% efficiency

Coding Examples

<table>
<thead>
<tr>
<th>Bits</th>
<th>0 0 1 0 1 1 1 0 1 0 0 0 1 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRZ</td>
<td></td>
</tr>
<tr>
<td>Clock</td>
<td></td>
</tr>
<tr>
<td>Manchester</td>
<td></td>
</tr>
<tr>
<td>NRZI</td>
<td></td>
</tr>
</tbody>
</table>
4B/5B Codes

- We want transitions *and* efficiency …
- Solution: map data bits (which may lack transitions) into code bits (which are guaranteed to have them)

- 4B/5B code:
 - 0000 11110, 0001 01001, … 1111 11101
 - Never more than three consecutive 0s back-to-back
 - 80% efficiency

- This code is used by LANs such as FDDI

3. Model of a Link

- Abstract model is typically all we will need
 - What goes in comes out altered by the model
- Other parameters that are important:
 - The kind and frequency of errors
 - Whether the media is broadcast or not
Message Latency

- How long does it take to send a message?

 ![Diagram](message-latency.png)

- Two terms:
 - Propagation delay = distance / speed of light in media
 - Transmission delay = message (bits) / rate (bps)

- In effect, slow links stretch bits out in time/space
 - Later we will see queuing delay …

One-way Latency examples

- Either a slow link or long wire makes for large latency

- Dialup with a modem:
 - D = 10ms (say), R = 56Kbps, M = 1000 bytes
 - Latency = 10ms + (1024 x 8)/(56 x 1024) sec = 153ms!

- Cross-country with T3 (45Mbps) line:
 - D = 50ms, R = 45Mbps, M = 1000 bytes
 - Latency = 50ms + (1024 x 8) / (45 x 1000000) sec = 50ms!
Terminology

- Latency is typically the one way delay over a link
 - But latency and delay are generic terms
- The round trip time (RTT) is twice the one way delay
 - Measure of how long to signal and get a response
- An important metric is the bandwidth-delay product
 - Measure of how much data can be in-flight at a time

4. Framing

- Need to send message, not just bits
 - Requires that we synchronize on the start of message reception at the far end of the link
 - Complete Link layer messages are called frames

- Common approach: Sentinels
 - Look for special control code that marks start of frame
 - And escape or “stuff” this code within the data region
Point-to-Point Protocol (PPP)

- IETF standard, used for dialup and leased lines

<table>
<thead>
<tr>
<th>Flag 0x7E</th>
<th>(header)</th>
<th>Payload (variable)</th>
<th>(trailer)</th>
<th>Flag 0x7E</th>
</tr>
</thead>
</table>

- Flag is special and indicates start/end of frame
- Occurrences of flag inside payload must be “stuffed”
 - Replace 0x7E with 0x7D, 0x5E
 - Replace 0x7D with 0x7D, 0x5D

Alternatives that avoid stuffing

- “Invalid” signal from physical layer
 - Just trust me. Used in Ethernet and FDDI (later).
- Explicit byte count after flag
- SONET: “clock”-based framing
 - Periodic sync information plus very accurate clock
 - Used extensively in the telecommunications industry

- What are the pros and cons?
 - Efficiency (in terms of bandwidth)
 - Robustness (with respect to errors)
Key Concepts

- We typically model links in terms of bandwidth and delay, from which we can calculate message latency.
- Different media have different properties that affect their performance as links.
- We need to encode bits into signals so that we can recover them at the other end of the channel.
- Framing allows complete messages to be recovered at the far end of the link.