CSE/EE 461 – Lecture 22

Naming and the DNS

David Wetherall
djw@cs.washington.edu

Last Time

• Network support for QOS

• Focus
 – What network mechanisms provide which kinds of quality assurances?

• Topics
 – Scheduling and Buffer management
 – Fair Queuing
 – Intserv
 – Diffserv
This Lecture

- Naming

- Focus
 - How do we name hosts etc.?

- Topics
 - Domain Name System (DNS)
 - Email/URLs

Names and Addresses

- Names are identifiers for objects/services (high level)
- Addresses are locators for objects/services (low level)
- Resolution is the process of mapping name to address
- But, addresses are really lower-level names; many levels used
Naming in Systems

• Ubiquitous
 – Files in filesystem, processes in OS, pages on the web, ...

• Decouple identifier for object/service from location
 – Hostnames provide a level of indirection for IP addresses

• Naming greatly impacts system capabilities and performance
 – Ethernet addresses are a flat 48 bits
 • flat ➔ any address anywhere but large forwarding tables
 – IP addresses are hierarchical 32/128 bits
 • hierarchy ➔ smaller routing tables but constrained locations

Internet Hostnames

• Hostnames are human-readable identifiers for end-systems based on an administrative hierarchy
 – galah.cs.washington.edu is my desktop machine

• IP addresses are a fixed-length binary encoding for end-systems based on their position in the network
 – 128.95.2.106 is galah’s IP address

• Original name resolution: HOSTS.TXT
• Current name resolution: Domain Name System
• Future name resolution: ?
Original Hostname System

- When the Internet was really young …

- Flat namespace
 - Simple (host, address) pairs

- Centralized management
 - Updates via a single master file called HOSTS.TXT
 - Manually coordinated by the Network Information Center (NIC)

- Resolution process
 - Look up hostname in the HOSTS.TXT file

Scaling Problems

- Coordination
 - Between all users to avoid conflicts

- Inconsistencies
 - Between update and distribution of new version

- Reliability
 - Single point of failure

- Performance
 - Competition for centralized resources
Domain Name System (DNS)

- Designed by Mockapetris and Dunlap in the mid 80s

- Namespace is hierarchical
 - Allows much better scaling of data structures
 - e.g., galah.cs.washington.edu

- Namespace is distributed
 - Decentralized administration and access
 - e.g., galah managed by CSE

- Resolution is by query/response
 - With replicated servers for redundancy
 - With heavy use of caching for performance

DNS Hierarchy

- “dot” is the root of the hierarchy
- Top levels now controlled by ICANN
- Lower level control is delegated
- Usage governed by conventions
- FQDN = Fully Qualified Domain Name
DNS Distribution

- Data managed by **zones** that contain resource records
 - Zone is a complete description of a portion of the namespace
 - e.g., all hosts and addresses for machines in washington.edu with pointers to subdomains like cs.washington.edu

- One or more nameservers manage each zone
 - Zone transfers performed between nameservers for consistency
 - Multiple nameservers provide redundancy

- Client resolvers query nameservers for specified records
 - Multiple messages may be exchanged per DNS lookup to navigate the name hierarchy (coming soon)

DNS Lookups/Resolution

- DNS queries/responses carried on UDP port 53

Caching

- Servers and clients cache results of DNS lookups
 - Cache partial results too (e.g., server for princeton.edu)
 - Greatly improves system performance; lookups the rare case

- Cache using time-to-live (TTL) value from provider
 - higher TTL means less traffic, lower TTL means less stale info

- Negative caching is used too!
 - errors can cause repeated queries for non-existent data
DNS Bootstrapping

- Need to know IP addresses of root servers before we can make any queries

- Addresses for 13 root servers ([a-m].root-servers.net) handled via initial configuration (named.ca file)

Building on the DNS

- Other naming designs leverage the DNS

 - Email:
 - e.g., djw@cs.washington.edu is djw in the domain cs.washington.edu

 - Uniform Resource Locators (URLs) name for Web pages
 - e.g., www.cs.washington.edu/homes/djw
 - Use domain name to identify a Web server
 - Use “/” separated string to name path to page (like files)
Future Evolution of the DNS

- Design constrains us in two major ways that are increasingly less appropriate
 - Static host to IP mapping
 - What about mobility (Mobile IP) and dynamic address assignment (DHCP)
 - Location-insensitive queries
 - What if I don’t care what server a Web page comes from, as long as it’s the right page?
 - e.g., a yahoo page might be replicated

Akamai

- Use the DNS to effect selection of a nearby Web cache
 - Leverage separation of static/dynamic content
 - Beware DNS caching
Key Concepts

- The design of names, addresses and resolution has a significant impact on system capabilities

- Hierarchy, decentralization and caching allow the DNS to scale
 - These are general techniques!