CSE/EE 461 – Lecture 19

Quality of Service

David Wetherall
djw@cs.washington.edu

Last Time ...

• HTTP and the Web (but not HTML)

• Focus
 – How do Web transfers work?

• Topics
 – HTTP, HTTP1.1
 – Get-If-Modified
 – Caching and Consistency
This Lecture

- Introduction to Quality of Service

- Focus
 - What transports do applications need?

- Topics
 - Real-time versus Elastic applications
 - Adapting to variable delay
 - Token buckets as bandwidth descriptors

Internet “Best Effort” Service

- Our network model so far:
 - IP at routers: a shared, first come first serve (drop tail) queue
 - TCP at hosts: probes for available bandwidth, causing loss

- The mechanisms at routers and hosts determine the kind of service applications will receive from the network
 - TCP causes loss and variable delay, and Internet bandwidth varies!

- Q: What kinds of service do different applications need?
 - The Web is built on top of just the “best-effort” service
 - Want better mechanisms to support demanding applications
An Audio Example

- Playback is a real-time service in the sense that the audio must be received by a deadline to be useful

Real-time apps need assurances from the network

Q: What assurances does playback require?

Network Support for Playback

- Bandwidth
 - There must be enough on average
 - But we can tolerate to short term fluctuations
- Delay
 - Ideally it would be fixed
 - But we can tolerate some variation (jitter)
- Loss
 - Ideally there would be none
 - But we can tolerate some losses
Example: Delay and Jitter

- Buffer before playout so that most late samples will have arrived

Tolerating Jitter with Buffering
Taxonomy of Applications

- Applications
 - Real-time
 - Tolerant
 - Adaptive
 - Non-adaptive
 - Rate-adaptive
 - Adaptive
 - Non-adaptive
 - Elbow
 - Interactive
 - Interactive bulk
 - Asynchronous

Specifying Bandwidth Needs

- Problem: Many applications have variable bandwidth demands

- Same average, but very different needs over time. One number. So how do we describe bandwidth to the network?
Token Buckets

- Common, simple descriptor
- Use tokens to send bits
- Average bandwidth is R bps
- Maximum burst is B bits

Key Concepts

- Different apps need different network support
 - Elastic versus real-time applications
- Adaptation is a key technique, e.g., playout buffer
- Token buckets are a simple bandwidth descriptor
- Next time: How do we build networks that provide more assurances than TCP/IP so far?