CSE/EE 461 – Lecture 13/14

E2E and Flow Control

David Wetherall
djw@cs.washington.edu

Flow Control

- Sender must transmit data no faster than it can be consumed by the receiver
 - Receiver might be a slow machine
 - App might consume data slowly

- Implement by adjusting the size of the sliding window used at the sender based on receiver feedback about available buffer space
 - This is the purpose of the Advertised Window field
Sender and Receiver Buffering

Example - Exchange of Packets

Receiver has buffer of size 4 and application doesn’t read

Stall due to flow control here
We've been talking about the Transport layer but…

ARQ is used by some link layers
- Acknowledgements in 802.11

Error detection/correction codes boost reliability
- Ethernet CRC, IP header checksum, etc.

Where is the “right” place in the protocol stack?
End-to-End Argument

- Key design principle applied in the Internet
- Reliability is needed end-to-end and can’t be replaced by lower layer mechanisms. So put it end-to-end; use lower mechanisms to improve performance as needed.

- TCP provides reliable delivery
 - Checksums packet data as well
- Lower layers keep their residual error rate is low
 - CRC enough for Ethernet; wireless links more problematic