CSE/EE 461 – Lecture 6

More MAC and Wireless

Neil Spring (nspring@cs)
David Wetherall
djw@cs.washington.edu

Last Time ...

• Medium Access Control (MAC) sublayer

• Random access protocols:
 – Aloha
 – CSMA variants
 – Ethernet (CSMA/CD)
This Lecture

More on the MAC layer:

1. Wireless schemes
2. Contention-free protocols

1. Wireless Communication

Wireless is more complicated than wired …

1. Cannot detect collisions
 - Transmitter swamps co-located receiver
2. Different transmitters have different coverage areas
 - Asymmetries lead to hidden/exposed terminal problems
Hidden Terminals

- A and C can both send to B but can’t hear each other
 - A is a hidden terminal for C and vice versa
- CSMA will be ineffective – want to sense at receiver

Exposed Terminals

- B, C can hear each other but can safely send to A, D
- Compare to spatial reuse in cell phones:
CSMA with Collision Avoidance

- Since we can’t detect collisions, we avoid them
 - CSMA/CA as opposed to CSMA/CD
 - Not greedy like Ethernet

- When medium busy, choose random backoff interval
 - Wait for that many idle timeslots to pass before sending
 - Remember p-persistence … a refinement

- When a collision is inferred, retransmit with binary exponential backoff (like Ethernet)
 - Use CRC and ACK from receiver to infer “no collision”
 - Again, exponential backoff helps us adapt “p” as needed

RTS / CTS Protocols (MACA)

1. B stimulates C with Request To Send (RTS)
2. A hears RTS and defers to allow the CTS
3. C replies to B with Clear To Send (CTS)
4. D hears CTS and defers to allow the data
5. B sends to C
802.11 Wireless LANs

- Emerging standard with a bunch of options/features …
- Wireless plus wired system or pure wireless (ad hoc)
- Avoids collisions (CSMA/CA (p-persistence), RTS/CTS)
- Built on new links (spread spectrum, or diffuse infrared)

2. Contention-free Protocols

- Collisions are the main difficulty with random schemes
 - Inefficiency, limit to scalability

- Q: Can we avoid collisions?
- A: Yes. By taking turns or with reservations
 - Token Ring / FDDI, DQDB

- Tradeoffs
 - complexity, efficiency, access latency, “QOS”
Token Ring (802.5)

- Token rotates permission to send around node
- Sender injects packet into ring and removes later
 - Maximum token holding time (THT) bounds access time
 - Early or delayed token release
 - Round robin service, acknowledgments and priorities
- Monitor nodes ensure health of ring

FDDI (Fiber Distributed Data Interface)

- Roughly a large, fast token ring
 - 100 Mbps and 200km vs 4/16 Mbps and local
 - Dual counter-rotating rings for redundancy
 - Complex token holding policies for voice etc. traffic

- Token ring advantages
 - No contention, bounded access delay
 - Support fair, reserved, priority access

- Disadvantages
 - Complexity, reliability, scalability
DQDB (Distributed Queue Dual Bus)

- Two unidirectional buses that carry fixed size cells
 - Cells are marked busy/free and can signal a request too
- Nodes maintain a distributed FIFO queue
 - By sending requests they are reserving future access

DQDB Algorithm

- Two counters per direction (UP, DN)
 - RC (request count), CD (countdown)
- Consider sending downstream (DN):
 - Always have RC count UP requests, minus free DN cells if larger than zero
 - This is a measure of how many others are waiting to send
 - To send, copy RC to CD, decrement CD for each free DN cell, send when zero
 - This waits for earlier requests to be satisfied before sending
- Highly scalable, efficient, but not perfectly fair
Key Concepts

- The complexities of wireless communication
 - Collision detection, hidden and exposed terminals
- There are contention-free MAC protocols
 - Turn taking and reservations