CSE/EE 461 – Lecture 20

Congestion Avoidance

David Wetherall
djw@cs.washington.edu

Last Time …

• Introduction to Quality of Service

• Focus
 – What transports do applications need?

• Topics
 – Real-time versus Elastic applications
 – Adapting to variable delay
 – Token buckets as bandwidth descriptors
This Lecture

- Congestion Avoidance

- Focus
 - How to we avoid congestion?

- Topics
 - Random Early Detection (RED) gateways
 - Explicit Congestion Notification (ECN)

Why Congestion Avoidance?

- TCP causes congestion as it probes for the available bandwidth and then recovers from it after the fact
 - Leads to loss, delay and bandwidth fluctuations (Yuck!)
 - We want congestion avoidance, not congestion control

- Congestion avoidance mechanisms
 - Aim to detect incipient congestion, before loss. So monitor queues to see that they absorb bursts, but not build steadily
FIFO with Tail Drop
Incipient Congestion at a Router

- Sustained overload causes queue to build and overflow

![Graph showing queue length over time with instantaneous and average lines]

Random Early Detection (RED)

- Common approach is to have routers monitor average queue and send “early” signal to source when it builds by probabilistically dropping a packet

![Diagram showing MaxThreshold, MinThreshold, and AvgLen]

- Paradox: early loss can improve performance!
Red Drop Curve

- Start dropping a fraction of the traffic as queue builds
 - Expected drops proportional to bandwidth usage
 - When queue is too high, revert to drop tail
 - Nice theory, difficult to set parameters in practice

Explicit Congestion Notification (ECN)

- Why drop packets to signal congestion?
 - Drops are a robust signal, but there are other means …
 - We need to be careful though: no extra packets

- ECN signals congestion with a bit in the IP header
- Receiver returns indication to the sender, who slows
 - Need to signal this reliably or we risk instability

- RED actually works by “marking” packets
 - Mark can be a drop or ECN signal if hosts understand ECN
 - Supports congestion avoidance without loss
Aside: TCP Vegas (Peterson ’94)

- RED needs router upgrades but no host upgrades
- Instead, can we upgrade host but not router?

- TCP Vegas looks at the difference between cwnd (the amount of outstanding data in the network) and that acknowledged from the other side in the last interval
 - Excess must be buffered in the network at router queues
 - Vegas slows down when it believes there is a queue and otherwise increases to use the available bandwidth

Key Concepts

- We want to avoid congestion rather than control it after it has occurred
 - Think of in terms of the queues at routers

- Random early packet drops, rather than tail drop, can have unintuitive advantages
 - Signal congestion early, before we’re forced to drop repeatedly

- ECN signals congestion using bit in the IP header
 - No loss and no extra packets at overloaded times