Last Time

• Wrap up on the Transport Layer

• Focus
 – How does TCP share bandwidth?

• Topics
 – Slow-start and congestion avoidance
 – Fast retransmission and recovery
This Time

- Naming

- Focus
 - How do we name hosts etc.?

- Topics
 - Domain Name System (DNS)
 - Email/URLs
Names are identifiers for objects/services (typ. high level)
Addresses are locators for objects/services (typ. lower level)
Process of mapping name to (lower level) address is resolution
BUT: Addresses are really lower-level names; many levels used
Naming in Systems

- Ubiquitous
 - Files in filesystem, processes in OS, pages on the web, ...

- Decouple identifier for object/service from location
 - Hostnames provide a level of indirection for IP addresses

- Naming greatly impacts system capabilities and performance
 - Ethernet addresses are a unique flat 48 bits
 - unique \rightarrow management; flat \rightarrow any address anywhere
 - IP addresses are hierarchical 32/128 bits
 - hierarchy \rightarrow smaller routing tables but constrained locations
Case Study: Internet Hostnames

- Hostnames are human-readable identifiers for end-systems based on an administrative hierarchy
 - galah.cs.washington.edu is my desktop machine
- IP addresses are a fixed-length binary encoding for end-systems based on their position in the network
 - 128.95.2.106 is galah’s IP address

- Original name resolution: HOSTS.TXT
- Current name resolution: Domain Name System
- Future name resolution: ?
Original Hostname System

- When the Internet was really young ...

- Flat namespace
 - Simple (host, address) pairs

- Centralized management
 - Updates via a single master file called HOSTS.TXT
 - Manually coordinated by the Network Information Center (NIC)

- Resolution process
 - Look up hostname in the HOSTS.TXT file
Scaling Problems

• Coordination
 – Between all users to avoid conflicts

• Inconsistencies
 – Between update and distribution of new version

• Reliability
 – Single point of failure

• Performance
 – Competition for centralized resources
Domain Name System (DNS)

- Mockapetris and Dunlap mid 80s; Keshav 10, esp. 10.8

- Namespace is hierarchical
 - Allows much better scaling of data structures
 - e.g., galah.cs.washington.edu

- Namespace is distributed
 - Decentralized administration and access
 - e.g., galah managed by CSE

- Resolution is by query/response
 - With replicated servers for redundancy
 - With heavy use of caching for performance
DNS Hierarchy

- “dot” is the root of the hierarchy
- Top levels now controlled by ICANN
- Lower level control is delegated
- Usage governed by conventions
- FQDN = Fully Qualified Domain Name
DNS Components

- Data managed by zones that contain resource records
 - Zone is a complete description of a portion of the namespace
 - e.g., all hosts and addresses for machines in washington.edu with pointers to subdomains like cs.washington.edu

- One or more nameservers manage each zone
 - Zone transfers performed between nameservers for consistency
 - Multiple nameservers provide redundancy

- Client resolvers query nameservers for specified records
 - Multiple messages may be exchanged per DNS lookup to navigate the name hierarchy (coming soon)
DNS Lookups

- DNS queries/responses carried on UDP port 53

Partial results (e.g. server for princeton.edu) are cached too
Hierarchy of Nameservers

- Root name server
 - Princeton name server
 - Cisco name server
 - CS name server
 - EE name server
Caching

• Servers and clients cache results of DNS lookups
 – Cache partial results too (e.g., server for princeton.edu)
 – Greatly improves system performance; lookups the rare case

• Cache using time-to-live (TTL) value from provider
 – higher TTL means less traffic, lower TTL means less stale info

• Negative caching is used too!
 – errors can cause repeated queries for non-existent data
DNS Bootstrapping

- Need to know IP addresses of root servers before we can make any queries

- Addresses for 13 root servers ([a-m].root-servers.net) handled via initial configuration (named.ca file)
Finally, Reverse Queries

- How do we find out what hostname corresponds to an IP address?
 - Used as a weak authentication check by many web servers

- Idea: Reuse existing DNS machinery
 - Called the IN-ADDR.ARPA domain
 - Reverse IP address and query in that domain
 - e.g., 106.2.95.128.IN-ADDR.ARPA
Building on the DNS

- Other naming designs leverage the DNS

- Email:
 - djw@cs.washington.edu is djw in the domain cs.washington.edu

- Uniform Resource Locators (URLs) name for Web pages
 - e.g., www.cs.washington.edu/homes/djw
 - Use domain name to identify a Web server
 - Use “/” separated string to name path to page (like files)
Email

- Mail messages delivered between mailboxes with SMTP (Simple Mail Transport Protocol) over TCP port 25
 - SMTP defines mail/address formats, and handoff procedures
 - Other protocols (POP3, IMAP) used to check your mailbox

- Question:
 - How do we find the mailbox for djw@cs.washington.edu?

- Answer:
 - Might contact host cs.washington.edu ... not done
 - Instead, look up MX (Mailer Exchange) DNS record for domain
 - Saves users from knowing internal details
Email Names and Addresses

1. User
 user@cs.princeton.edu

2. Name server
 cs.princeton.edu

3. MX query
 192.12.69.5

4. Mail program
 192.12.69.5

5. TCP
 192.12.69.5

6. IP
 192.12.69.5

User connects to mail server using TCP/IP, and the mail server queries the name server for MX records to determine the IP address of the destination server.
Web/URLs

• Pages retrieved from Web server by client (browser) using HTTP (HyperText Transfer Protocol) running on TCP port 80 (typically)
 – HTTP defines format of requests/responses
 – Each page a separate connection (until persistent HTTP)
 – Try telnet <webserver> 80 and then “GET /index.html”

• Question:
 – How do we find the server www.mit.edu?

• Answer:
 – Ah ha! What about looking up a “WX” record in the DNS ... No
 – Instead, use hostname as Web server directly
Future Evolution of the DNS

- Design constrains us in two major ways that are increasingly less appropriate

- Static host to IP mapping
 - What about mobility (Mobile IP) and dynamic address assignment (DHCP)

- Location-insensitive queries
 - What if I don’t care what server a Web page comes from, as long as it’s the right page?
 - e.g., a yahoo page might be replicated
Akamai

- Use the DNS to effect selection of a nearby Web cache

- Leverage separation of static/dynamic content
- Beware DNS caching
Key Concepts

- The design of names, addresses and resolution has a significant impact on system capabilities

- Hierarchy, decentralization and caching allow the DNS to scale
 - These are general techniques