Last Time

- We finished up the Network layer
 - Internetworks (IP)
 - Routing (DV/RIP, LS/OSPF)
 - Scalable addressing/routing (BGP, CIDR)
 - Routers
This Time

• We begin on the Transport layer

• Focus
 – How do we send information reliably?

• Topics
 – The Transport layer
 – Acknowledgements and retransmissions (ARQ)
 – End-to-End argument (E2E)
The Transport Layer

• Builds on the services of the Network layer

• Communication between processes running on hosts
 – Naming/Addressing

• Stronger guarantees of message delivery
 – Reliability
Example – Common Properties

TCP
• Guaranteed delivery
• In-order delivery
• Single delivery
• Arbitrarily long messages
• Synchronization
• Flow control
• Multiple processes

IP
• Lost packets
• Reordered packets
• Duplicate packets
• Limited size packets
Internet Transport Protocols

- **UDP**
 - Datagram abstraction between processes
 - With error detection

- **TCP**
 - Bytestream abstraction between processes
 - With reliability
 - Plus congestion control (later!)
Automatic Repeat Request (ARQ)

- Packets can be corrupted or lost. How do we add reliability?
- Acknowledgments (ACKs) and retransmissions after a timeout
- ARQ is a generic name for protocols based on this strategy
The Need for Sequence Numbers

- In the case of ACK loss (or poor choice of timeout) the receiver can’t distinguish this message from the next – Number packets; here, a single bit will do
Stop-and-Wait

- Only one outstanding packet at a time
- Also called alternating bit protocol
Limitation of Stop-and-Wait

- Lousy performance if wire time \ll prop. delay
 - How bad? You do the math
- Want to utilize all available bandwidth
 - Need to keep more data “in flight”
 - How much? Bandwidth-delay product
- Leads to Sliding Window Protocol
Sliding Window – Sender

- Window bounds outstanding data
 - Implies need for buffering at sender
- “Last” ACK applies to in-order data
- Sender maintains timers too
 - Go-Back-N: one timer, send all unacknowledged on timeout
 - Selective Repeat: timer per packet, resend as needed
Sliding Window – Timeline

Sender

Receiver

Time

...
Sliding Window – Receiver

Receiver: ...

Receive Window

“Last” Received Largest Accepted

- Receiver buffers too:
 - data may arrive out-of-order
 - or faster than can be consumed (flow control)

- Receiver ACK choices:
 - Individual, Cumulative (TCP), Selective (newer TCP), Negative
Sliding Window Functions

- Sliding window is a mechanism
- It supports multiple functions:
 - Reliable delivery
 - In-order delivery
 - Flow control
Which layer provides Reliability?

- We’ve been talking about the Transport layer but ...

- ARQ is used by some link layers
 - Acknowledgements in 802.11

- Error detection/correction codes boost reliability
 - Ethernet CRC, IP header checksum, etc.

- Where is the “right” place in the protocol stack?
End-to-End Argument

- Key design principle applied in the Internet
- Reliability is needed end-to-end and can’t be replaced by lower layer mechanisms. So put it end-to-end; use lower mechanisms to improve performance as needed.

- TCP provides reliable delivery
 - Checksums packet data as well
- Lower layers keep their residual error rate is low
 - CRC enough for Ethernet; wireless links more problematic
Key Concepts

- Transport layer allows processes to communicate with stronger guarantees, e.g., reliability
- Basic reliability is provided by ARQ mechanisms
 - Stop-and-Wait through Sliding Window
- End-to-End principle guides placement of functions

coming next: Connections and Congestion Control
Read Keshav 12.4 and Ch 13, esp. 13.4