This Time

• Multicast. See Keshav 11.11.
• Focus
 - How do we communicate efficiently with a group of participants
• Topics
 - Group communication
 - Multicast routing (DVMRP, PIM/CTP)
 - Future: reliable multicast

Why not “Send N Copies”?

• It doesn’t scale with group size N
 - For some applications (Internet TV) N can be huge
 - For other applications (Quake) this would be reasonable
• As N grows
 - The source needs to track N members
 - Effective bandwidth near the source is reduced by N
 - Latency to do the multicast grows with N

Group Communication

• Many applications involve group communication
 - Quake, conferencing (vnc), stock quote distribution,
 - VOD/Internet “TV”, software updates, resource discovery …
• Semantics issues
 - Many-to-many or many-to-one communication
 - Consistent delivery order across all members?
• We concentrate on efficient/scalable multicast routing
 - Multicast = send to multiple receivers at once
 - Unicast = send to a single receiver (regular IP)
 - Broadcast = send to all receivers

Example – Repeated Unicast

• Send one copy to each of three receivers
 - Routers do not participate in any special manner
IP Multicast Service Model

- Extend IP “best-effort” model for efficient multipoint delivery
 - A single message is sent by any source to reach all receivers
 - Routers take care of the details of delivery!
 - IP multicast address (class D) identifies a group
 - Many-to-many delivery is supported

- Receivers explicitly join/leave a group to receive messages
 - Each receiver contacts the local designated router using IGMP
 - IGMP = Internet Group Management Protocol
 - Receivers learn multicast address via an out-of-band channel

- Senders don’t know group membership
 - Multicast address provides a level of indirection
 - Useful for rendezvous / resource discovery
 - Anyone can send to a multicast group w/o explicit setup

Example – Multicast Group

- Set of receivers associated with a group is dynamic

Example – IGMP

- By convention, hosts don’t participate in routing
 - IGMP gives local router sufficient info to act as its agent

Multicast on Broadcast Media

- The question we really want to answer: how do we route multicast packets in a network so that they reach the right receivers
 - Over a broadcast link this is easy

- Ethernet readily allows all hosts to receive frames
 - Some addresses reserved for multicast
 - Interfaces subscribe to their multicast groups
 - Or receive in promiscuous mode and filter

- Can extend to extended (bridged) LANs
 - Bridges forward all multicast traffic, it will reach all LANs
 - Spanning tree provides loop avoidance

Multicast in an Internet

- Problem: How to set up router forwarding tables to send to different groups (example below)?

Reverse Path Broadcast (RPB)

- Observation: can broadcast by forwarding along reverse routes!
 - At each node: look up source and check packet came from “output” link using unicast routes
 - If so, send packet in “reverse” on all other interfaces
RPB without Duplicates

- Problem: With RPB some nodes get duplicates
- Solution: Use unicast route to determine your children
 - e.g., C knows B doesn’t use it to get to A, so C won’t send to B
 - Leaves darkened tree only

RPB with Pruning

- Problem: Even w/o duplicates, we still flood network
- Solution: Prune away tree branches with no members
 - E.g. G prunes to D; all children of D are gone, so D prunes too
 - Typically prune on demand and expire prune information

DVMRP

- DVMRP = Distance Vector Multicast Routing Protocol
- Early multicast routing protocol still used in Internet
- Distance vector used to calculate source spanning trees
- Multicast with reverse path forwarding and pruning
 - For each group and source, router maintains next hop routers

Multicast with Link State

- Can pass around member locations and compute pre-pruned per-source spanning trees at each node
- MOSPF (Multicast OSPF) is an example of this approach

MBONE (Multicast Backbone)

- IP multicast routing requires that routers be upgraded
 - But “native” multicast isn’t available everywhere
- Multicast in the Internet happens over the MBONE
 - An overlay with tunnels between multicast nodes
 - Within this overlay multicast appears available “everywhere”

Scaling Issues

- DMVRP, MOSPF require each router to maintain state for each group (G) and each source (S): S x G entries
 - This quantity grows quickly if multicast takes off
 - Hierarchical aggregation is difficult for multicast addresses
- Approach to solve for the wide-area:
 - Use a single shared spanning tree per group for all sources
 - Relies on notion of a core or rendezvous point
 - Only routers on the spanning tree keep forwarding state
 - Dense-mode versus Sparse-mode
PIM/CBT

- Protocol Independent Multicast (PIM), Core Based Trees (CBT)
- Shared tree for each group, explicit joins to tree build routes
- PIM uses a rendezvous point (RP), CBT a core

Pros: scalability
Cons: finding the RP/core, performance, complexity

Multicast Transport Protocols

- We discussed “best effort” (unreliable) IP multicast
- Multicast transport protocols are an open research area

- Heterogeneous receivers
 - How to send to receivers with different capabilities?
 - “Layered” video has been used for bandwidth variation
- Reliable multicast adds more complexities
 - How do receivers ack the source without overwhelming?
 - How to retransmit lost packets to just the receivers who lost?
 - How do we adjust the transmission rate?

Key Concepts

- Many apps can benefit from group communication
- Multicast routing allows efficient multi-point messages to be sent over an internetwork
- Reverse Path Broadcast (RBP) an elegant technique
 - But it’s not scalable to wide-area multicast
- Making multicast scale is hard
 - Can be much state in routers (can be $S \times G$)
 - Can’t easily aggregate multicast routing info