CSE/EE 461 – Lecture 15

David Wetherall
dwj @ cs.washington.edu

Last Time

- Naming
 - Focus
 - How do we name hosts etc.?
 - Topics
 - Domain Name System (DNS)
 - Email/URLs

This Time

- A whirlwind tour of network security
- Focus
 - How do we secure distributed systems?
- Topics
 - Privacy, integrity, authentication
 - Cryptography and key distribution
 - Firewalls and Denial-of-service
 - TCP/IP vulnerabilities

What do we mean by “Security”?*

- Networks are fundamentally shared
 - Need means to protect legitimate participants in a distributed system from others with access to the network
- Privacy: messages can’t be eavesdropped
- Integrity: messages can’t be tampered with
- Authenticity: messages were sent by the right party
- Denial-of-Service: overwhelm system with bogus tasks causing service to be denied for legitimate tasks

Approaches at 10,000 ft

- Physical security
 - Tackle the problem of sharing directly
- “Security through obscurity”
 - Hope no-one will find out what you’re doing!
- Throw math at the problem
 - Cryptography
- Why is security difficult?
 - It’s a negative goal: can you be sure there are no flaws?
 - Often assumptions turn out to be invalid, esp. randomness

Basic Cryptography

- Cryptographer chooses functions E, D and keys K^E, K^D
- Mathematical basis
- Cryptanalyst try to “break”
 - Depends on what is known: E and D, M and C?
 - Attacks: traffic analysis, known plaintext, chosen plaintext
Secret Key Functions (DES, IDEA)

- Single key (symmetric) shared among parties
- Keys randomly chosen
 - But how do computers generate random numbers? Pitfall!
 - Ultimately need to tie to physical processes

Basics of DES

- DES uses a 64 bit key (56 + 8)
- Message encrypted 64 bits at a time
- 16 rounds in the encryption
- Each round scrambles 64 bits

DES (cont.)

- Repeat process for larger messages with "chaining"

Public Key Functions (RSA)

- Public and private key related mathematically
 - Public key can be published; private is a secret

Basics of RSA

- To generate keys:
 - Choose two large prime numbers p and q (>=256 bits). Let n = pq
 - Choose key e such that e and (p-1) x (q-1) are relatively prime.
 - Compute key d such that d = 1/e mod ((p-1) x (q-1))
 - Public key (encryption) is (e, n), private key (decryption) is (d, n)

- To use:
 - Encrypt: C = M^e mod n
 - Decrypt: M = C^d mod n

- Why it works:
 - M^ed = M in modulo arithmetic
 - Believe need to factor n into p and q to break and this is hard

Message Digests (MD5, SHA)

- Act as a cryptographic checksum or hash
 - Typically small compared to message (MD5 128 bits)
 - "One-way": infeasible to find two messages with same digest
Some Tradeoffs

- Number of brute force operations to crack depend on size of key
 - DES marginal now, 3DES used, RSA used with 1024 bit keys
 - 1977 RSA challenge solved after 17 years using the Internet
- Message digests and private key encryption typically much faster than public key encryption
 - e.g., Peterson says MD5 100Mbps, DES 40Mbps, RSA 1Kbps
 - Can improve system performance by using RSA to transfer DES keys for use in a session, or RSA to authenticate digests only
- Also, compress before encrypting

Authentication Protocols

- Three-way handshake for mutual authentication
 - Client and server share secrets, e.g., login password

- Session key exchanged

Via Trusted Third Party (Kerberos)

Message Integrity Protocols

- Sometimes we don’t care about privacy but do care about integrity/authenticity
- Digital signatures (RSA)
 - Sign message with private key (encrypt); others verify with public key (decrypt)
- MD5 with RSA
 - Send digest of message along with message
- Keyed MD5
 - Send digest of message plus shared secret along with message
- Last two methods increase performance

Public Key Authentication

Key Distribution

- Public key systems depend on the distribution of keys!
 - Public Key Infrastructures (PKIs), e.g., Verisign
 - An Achilles heel?
- Certificates (X.509)
 - Distribute keys by trusted certification authority (CA)
 - “I swear X’s public key is Y”, signed by CA
 - Still requires bootstrapping...
 - Also allows us to build chains of trust
 - e.g., public keys for a domain name so that “.edu” (root) certifies “washington.edu”’s key, they certify “cs…”’s key...
 - Certificate Revocation Lists needed to “undo” associations!
Pretty Good Privacy (PGP) – For authentic and confidential email
Secure Sockets (SSL) and Secure HTTP (HTTPS) – For secure Web transactions
IP Security (IPSEC) – Framework for encrypting/authenticating IP packets

SSL/TLS and HTTPS
- Secure transport layers targeted at Web transactions
 - SSL/TLS inserted between TCP and HTTP to make secure HTTP
- Extra handshake phase to authenticate and exchange shared session parameters
 - Such as secret keys used for encryption
 - Client might authenticate Web server but not vice-versa
 - Certificate Authority embedded in Web browser
- Performance optimization
 - Refer to shared state with session id
 - Can use same parameters across connections
 - Client sends session id, allowing server to skip handshake

IPSEC
- Framework for encrypted and authenticated IP packets
 - Choice of algorithms not specified
- Uses new protocol headers inside IPv4 packets
 - Authentication header
 - For message integrity and origin authenticity
 - Optionally "anti-replay" protection (via sequence number)
 - Encapsulating Security Payload
 - Adds encryption for privacy
- Depends on key distribution (ISAKAMP)
 - Sets up security associations
- Example use: secure tunnels between corporate offices

Filter-based Firewalls
- Sit between site and rest of Internet, filter packets
 - Enforce site policy in a manageable way
 - E.g. pass [*], 128.7.6.5, 80), then drop [*], 80)
 - Rules may be added dynamically to pass new connections
- Sometimes called a “level 4” switch
 - Acts like a router (accepts and forwards packets)
 - But looks at information up to TCP port numbers (layer 4)

Proxy-Based Firewalls
- Problem: Filter ruleset can be complex/insufficient
 - Adequate filtering may require application knowledge
- Run proxies for Web, mail, etc. just outside firewall
 - In the "de-militarized zone" DMZ
 - External requests go to proxies, only proxies connect inside
 - External user may or may not know this is happening
 - Proxies filter based on application semantics
Denial-of-Service Attacks

- Attacker can deny service to legitimate users if they can overwhelm the system providing the service
 - System has limited bandwidth, CPU, memory, etc. resources
 - Just sent it too many packets to handle ...

- Made more devastating by focusing on specific, limited resources and distributed nature of attacks
 - e.g., How many TCP connections can be open?
 - Today, build implementation to tolerate DOS
 - Tomorrow, design protocols to tolerate better, possibly network support for shutting down attack?

TCP/IP Vulnerabilities

- Low-level specifics in TCP/IP used to wreak havoc, especially if implementation is weak or buggy
- Many incidents of buffer over-runs
 - Attacker can send packet to crash or compromise host
- IP fragmentation:
 - End-system hangs on to fragments hoping to re-assemble ...
 - But for how long? Attacker can exhaust memory
 - Similarly, state created for TCP SYN packet
- Smurfing:
 - Send ICMP echo request to broadcast address with fake source address; source gets hosed
- These are just some representative examples ... many more (CERT)

Key Concepts

- Privacy, message integrity, origin authenticity
- Cryptographic mechanisms are used to support these properties: private key, public key and digests
- Firewalls are in widespread use today
- Denial-of-service consumes system resources