CSE/EE 461 – Lecture 14

David Wetherall
dwj@cs.washington.edu

Last Time

• Wrap up on the Transport Layer
 • Focus
 – How does TCP share bandwidth?
 • Topics
 – Slow-start and congestion avoidance
 – Fast retransmission and recovery

This Time

• Naming
 • Focus
 – How do we name hosts etc.?
 • Topics
 – Domain Name System (DNS)
 – Email/URLs

Names and Addresses

• Names are identifiers for objects/services (typ. high level)
• Addresses are locators for objects/services (typ. lower level)
• Process of mapping name to (lower level) address is resolution
• BUT: Addresses are really lower-level names; many levels used

Naming in Systems

• Ubiquitous
 – Files in filesystem, processes in OS, pages on the web, …
• Decouple identifier for objects/service from location
 – Hostnames provide a level of indirection for IP addresses
• Naming greatly impacts system capabilities and performance
 – Ethernet addresses are a unique flat 48 bits
 – unique ⇒ management: flat ⇒ any address anywhere
 – IP addresses are hierarchical 32/128 bits
 – hierarchy ⇒ smaller routing tables but constrained locations

Case Study: Internet Hostnames

• Hostnames are human-readable identifiers for end-systems based on an administrative hierarchy
 – galah.cs.washington.edu is my desktop machine
• IP addresses are a fixed-length binary encoding for end-systems based on their position in the network
 – 128.95.2.106 is galah’s IP address
• Original name resolution: HOSTS.TXT
• Current name resolution: Domain Name System
• Future name resolution: ?
When the Internet was really young...

Flat namespace
- Simple (host, address) pairs

Centralized management
- Updates via a single master file called HOSTS.TXT
- Manually coordinated by the Network Information Center (NIC)

Resolution process
- Look up hostname in the HOSTS.TXT file

Domain Name System (DNS)

- Mockapetris and Dunlap mid 80s; Keshav 10, esp. 10.8
- Namespace is hierarchical
 - Allows much better scaling of data structures
 - e.g., galah.cs.washington.edu
- Namespace is distributed
 - Decentralized administration and access
 - e.g., galah managed by CSE
- Resolution is by query/response
 - With replicated servers for redundancy
 - With heavy use of caching for performance

DNS Components

- Data managed by zones that contain resource records
 - Zone is a complete description of a portion of the namespace
 - e.g., all hosts and addresses for machines in washington.edu with pointers to subdomains like cs.washington.edu
 - One or more nameservers manage each zone
 - Zone transfers performed between nameservers for consistency
 - Multiple nameservers provide redundancy
 - Client resolvers query nameservers for specified records
 - Multiple messages may be exchanged per DNS lookup to navigate the name hierarchy (coming soon)

DNS Lookups

- DNS queries/responses carried on UDP port 53
 - Partial results (e.g., server for princeton.edu) are cached too
 - DNS queries/responses carried on UDP port 53

DNS Hierarchy

- "dot" is the root of the hierarchy
 - Top levels now controlled by ICANN
 - Lower level control is delegated
 - Usage governed by conventions
 - FQDN = Fully Qualified Domain Name

- Data managed by zones that contain resource records
 - Zone is a complete description of a portion of the namespace
 - e.g., all hosts and addresses for machines in washington.edu with pointers to subdomains like cs.washington.edu
 - One or more nameservers manage each zone
 - Zone transfers performed between nameservers for consistency
 - Multiple nameservers provide redundancy
 - Client resolvers query nameservers for specified records
 - Multiple messages may be exchanged per DNS lookup to navigate the name hierarchy (coming soon)
Hierarchy of Nameservers

- **Root name server**
- **Princeton name server**
- **CS name server**
- **EE name server**

Caching
- Servers and clients cache results of DNS lookups
 - Cache partial results too (e.g., server for princeton.edu)
 - Greatly improves system performance; lookups the rare case
- Cache using time-to-live (TTL) value from provider
 - higher TTL means less traffic, lower TTL means less stale info
- Negative caching is used too!
 - errors can cause repeated queries for non-existent data

DNS Bootstrapping
- Need to know IP addresses of root servers before we can make any queries
- Addresses for 13 root servers ([a-m].root-servers.net) handled via initial configuration (named.ca file)

Finally, Reverse Queries
- How do we find out what hostname corresponds to an IP address?
 - Used as a weak authentication check by many web servers
- Idea: Reuse existing DNS machinery
 - Called the IN-ADDR.ARPA domain
 - Reverse IP address and query in that domain
 - e.g., 106.2.95.128.IN-ADDR.ARPA

Building on the DNS
- Other naming designs leverage the DNS
- **Email:**
 - djw@cs.washington.edu is djw in the domain cs.washington.edu
- Uniform Resource Locators (URLs) name for Web pages
 - e.g., www.cs.washington.edu/homes/djw
 - Use domain name to identify a Web server
 - Use “/” separated string to name path to page (like files)

Email
- Mail messages delivered between mailboxes with SMTP (Simple Mail Transport Protocol) over TCP port 25
 - SMTP defines mail/address formats, and handoff procedures
 - Other protocols (POP3, IMAP) used to check your mailbox
- **Question:**
 - How do we find the mailbox for djw@cs.washington.edu?
- **Answer:**
 - Might contact host cs.washington.edu ... not done
 - Instead, look up MX (Mailer Exchange) DNS record for domain
 - Saves users from knowing internal details
Email Names and Addresses

- User: user@cs.princeton.edu
- Name server: cs.princeton.edu
- MX query

Web/URLs

- Pages retrieved from Web server by client (browser) using HTTP (HyperText Transfer Protocol) running on TCP port 80 (typically)
 - HTTP defines format of requests/responses
 - Each page a separate connection (until persistent HTTP)
 - Try telnet <webserver> 80 and then “GET /index.html”

- Question:
 - How do we find the server www.mit.edu?

- Answer:
 - Ah ha! What about looking up a “MX” record in the DNS... No
 - Instead, use hostname as Web server directly

Future Evolution of the DNS

- Design constrains us in two major ways that are increasingly less appropriate
 - Static host to IP mapping
 - What about mobility (Mobile IP) and dynamic address assignment (DHCP)
 - Location-insensitive queries
 - What if I don’t care what server a Web page comes from, as long as it’s the right page?
 - e.g., a yahoo page might be replicated

Akamai

- Use the DNS to effect selection of a nearby Web cache
- Leverage separation of static/dynamic content
- Beware DNS caching

Key Concepts

- The design of names, addresses and resolution has a significant impact on system capabilities
- Hierarchy, decentralization and caching allow the DNS to scale
 - These are general techniques