CSE/EE 461: Programming Assignment 1,
461turnin

Neil Spring
Autumn 2000

In this assignment, you will write a program to turnin your future program-
ming assignments. The intent of this assignment is to give you experience writ-
ing programs that use the network. This experience should include two pieces.
First, the sequence of system calls used to intiate and teardown a network con-
nection. Second, the use of messages in the form of structures in network byte
order.

If you’re unfamiliar with programming on a unix machine, this will be an
exercise in using the on-line man pages and compiler.

The program you will write will do the following:

1. connect to the 461turnin server running on poplar.cs.washington.edu,
using TCP at port 4610

2. send a message containing your names, CSE usernames, student ID num-
bers, which project and what file is being turned in.

3. wait for an acknowledgement stating that the server could parse your
message

4. send the number of bytes in the file, followed by the file itself.

5. wait for an acknowledgment containing the number of test cases passed,
which will represent your score on the assignment. (this will be more
important in later assignments)

1 system calls

Use the man command to get additional information on each of the following
calls, including function parameters and descriptions of the structures they use
and return. You may need to use the section number, eg. man 2 bind, to get
the correct entry.

The sequence of function calls should be roughly like:

1. socket



. gethostbyname
. connect

. write

. write

2
3
4
5. read
6
7. read
8

. close

You may need to deviate from this, perhaps calling read or write a number
of times before a message is complete.

You’ll also need to use htonl to convert integers from host byte order (little
endian on Intel machines) to network byte order (big endian) before sending
those integers across the network. Character strings are already in the correct
order.

2 message format

The initial request message:

int length;

int projectnumber;
int studentidil;

int studentid?2;
char namel[30];
char name2[30];
char usernamel[10];
char username2[10];
char filename[25];

The initial response message:

int length;
int error;

If error is not zero, it represents the field of the request message that is
incorrect. For example, if error is 1, the projectnumber field is wrong, or
perhaps not in network order. If error is not zero, the connection is then closed
by the server.

The upload message:

int length;
char content[];

The response message:



int length;
int passed;
int percentage;

length is the length of the message, since I may need to add additional
fields. passed is the number of tests your program has successfully passed, and
percentage is the percentage of tests that were successful, minus 20% per day
the assignment is late. (although not yet implemented)

After the response message is sent, the connection is closed.

My implementation of the client is about 100 lines long.



