Surfaces of revolution

17. Surfaces

Reading

Recommended:

- Hearn and Baker, sections 10.8, 10.9, 10.14.
- Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 1987.
- Stollnitz, DeRose, and Salesin. Wavelets for Computer Graphics: Theory and Applications, 1996, section 10.2.

Constructing surfaces of revolution

Given: A curve $C(u)$ in the $y z$-plane:

$$
C(u)=\left[\begin{array}{c}
0 \\
c_{y}(u) \\
c_{z}(u) \\
1
\end{array}\right]
$$

Let $R_{x}(\theta)$ be a rotation about the z-axis.
Find: A surface $S(u, v)$ which is $C(u)$ rotated about the z-axis.

General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface $S(u, v)$ by moving a profile curve $C(u)$ along a trajectory curve $T(v)$.

More specifically:

- Suppose that $C(u)$ lies in an $\left(x_{c}, y_{c}\right)$ coordinate system with origin O_{c}.
- For every point along $T(v)$, lay $C(u)$ so that O_{c} coincides with $T(v)$.

Orientation

The big issue:

- How to orient $C(u)$ as it moves along $T(v)$?

Here are two options:

1. Fixed (or static): Just translate O_{c} along $T(v)$.
2. Moving. Use the Frenet frame of $T(v)$.

- Allows smoothly varying orientation.
- Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

$$
\begin{aligned}
& \hat{t}(v)=\operatorname{normalize}\left(T^{\prime}(v)\right) \\
& \hat{b}(v)=\operatorname{normalize}\left(T^{\prime}(v) \times T^{\prime \prime}(v)\right) \\
& \hat{n}(v)=\hat{b}(v) \times \hat{t}(v)
\end{aligned}
$$

As we move along $T(v)$, the Frenet frame (t, b, n) varies smoothly.

Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:

- Put $C(u)$ in the normal plane $n b$.
- Place O_{c} on $T(v)$.
- Align x_{c} for $C(u)$ with -n.
- Align y_{c} for $C(u)$ with b.

If $T(v)$ is a circle, you get a surface of revolution exactly!

What happens at inflection points?

Variations

Several variations are possible:

- Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
- Morph $C(u)$ into some other curve $C^{\prime}(u)$ as it moves along $T(v)$.
- ...

Tensor product Bézier surfaces

Given a grid of control points $V_{i j}$, forming a control net, contruct a surface $S(u, v)$ by:

- treating rows of V as control points for curves $V_{0}(u), \ldots, V_{n}(u)$.
- treating $V_{0}(u), \ldots, V_{n}(u)$ as control points for a curve parameterized by v.

Tensor product surfaces, cont.

Let's walk through the steps:

Control curves in u

Curve at $S(1 / 2, v)$

Which control points are interpolated by the surface?

Matrix form

Tensor product surfaces can be written out explicitly:

$$
\begin{aligned}
S(u, v) & =\sum_{i=0}^{n} \sum_{j=0}^{n} V_{i j} B_{i}^{n}(u) B_{j}^{n}(v) \\
& =\left[\begin{array}{llll}
v^{3} & v^{2} & v & 1
\end{array}\right] M_{\text {Bézier }} V M_{\text {Bézier }}^{T}\left[\begin{array}{c}
u^{3} \\
u^{2} \\
u \\
1
\end{array}\right]
\end{aligned}
$$

Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C2 continuity and local control, we get B-spline curves:

- treat rows of B as control points to generate Bézier control points in u.
- treat Bézier control points in u as B-spline control points in v.
- treat B-spline control points in v to generate Bézier control points in u.

Tensor product B-splines, cont.

Which B-spline control points are interpolated by the surface?

Tensor product B-splines, cont.

Another example:

Trimmed NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by trimming the u-v domain.

- Define a closed curve in the $u-v$ domain (a trim curve)
- Do not draw the surface points inside of this curve.

It's really hard to maintain continuity in these regions, especially while animating.

Building complex models

Subdivision surfaces

Chaikin's use of subdivision for curves inspired similar techniques for subdivision.

Iteratively refine a control polyhedron (or control mesh) to produce the limit surface

$$
\sigma=\lim _{j \rightarrow \infty} M^{j}
$$

using splitting and averaging steps.

(a)

(b)

(c)

There are two types of splitting steps:

- vertex schemes
- face schemes

Vertex schemes

A vertex surrounded by n faces is split into n subvertices, one for each face:

After splitting

Doo-Sabin subdivision:

Face schemes

Each quadrilateral face is split into four subfaces:

Original

After splitting

Catmull-Clark subdivision:

Face schemes, cont.

Each triangular face is split into four subfaces:

After splitting

Loop subdivision:

Averaging step

Once again we can use masks for the averaging step:
where

$$
\alpha(n)=\frac{n(1-\beta(n))}{\beta(n)} \quad \beta(n)=\frac{5}{4}-\frac{(3+2 \cos (2 \pi / n))^{2}}{32}
$$

(carefully chosen to ensure smoothness.)

Adding creases without trim curves

In some cases, we want a particular feature such as a crease to be preserved. With NURBS surfaces, this required the use of trim curves.

For subdivision surfaces, we can just modify the subdivision mask.

Creases with trim curves, cont.

Here's an example using Catmull-Clark surfaces of the kind found in Geri's Game:

Interpolating subdivision surfaces

Interpolating schemes are defined by

- splitting
- averaging only new vertices

Summary

What to take home:

- How to construct swept surfaces from a profile and trajectory curve:
- with a fixed frame
- with a Frenet frame
- How to construct tensor product Bézier surfaces
- How to construct tensor product B-spline surfaces
- How to construct subdivision surfaces from their averaging masks

