Lecture 3: Computers and Color
Reading

- Hearn & Baker, sections 2.1-2.2, 4.3

Optional

Cathode ray tubes (CRTs)

Consists of:

- electron gun
- electron focusing lens
- deflection plates/coils
- electron beam
- anode with phosphor coating
CRTs, cont.

Electrons “boil off” the heated cathode and shoot towards the anode. Electrons striking the phosphors create light through:

- fluorescence (fraction of usec)
- phosphorescence (10 to 60 usec)

Different phosphors have different:

- color
- persistence (as long as a few seconds)

The image must be refreshed to avoid flicker:

- typically need at least 60 Hz (why 60 Hz?)
- exact frequency depends on:
 - persistence
 - image intensity
 - ambient lighting
 - wavelength
 - observer
Electron beam traces over screen in **raster scan order**.

- Each left-to-right trace is called a **scan line**.
- Each spot on the screen is a **pixel**.
- When the beam is turned off to sweep back, that is a **retrace**, or a **blanking interval**.
Resolution

The display’s **resolution** is determined by:

- number of scan lines
- number of pixels per scan line
- number of bits per pixel

Examples:

<table>
<thead>
<tr>
<th>Display Type</th>
<th>Resolution</th>
<th>Size</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitmapped display</td>
<td>960 x 1152 x 1b</td>
<td>1/8 MB</td>
<td></td>
</tr>
<tr>
<td>NTSC TV</td>
<td>640 x 480 x 16b</td>
<td>1/2 MB</td>
<td></td>
</tr>
<tr>
<td>Color workstation</td>
<td>1280 x 1024 x 24b</td>
<td>4 MB</td>
<td></td>
</tr>
<tr>
<td>Laser-printed page 300 dpi</td>
<td>8.5 x 11 x 300dpi x 1b</td>
<td>1 MB</td>
<td></td>
</tr>
<tr>
<td>Laser-printed page 1200 dpi</td>
<td>8.5 x 11 x 1200dpi x 1b</td>
<td>17 MB</td>
<td></td>
</tr>
<tr>
<td>Film</td>
<td>4500 x 3000 x 30b</td>
<td>50 MB</td>
<td></td>
</tr>
</tbody>
</table>
Framebuffers

Intensity of the raster scan beam is modulated according to the contents of a framebuffer.

Each element of the framebuffer is associated with a single pixel on the screen.
Color CRT monitors

Most color monitors employ shadow mask technology:

- uses triads of red, green, and blue phosphors at each pixel
- uses three electron guns, one per color
- shadow mask used to make each kind of phosphor only “visible” from one gun

These are also known as RGB monitors.
Additive color mixing

All colors on a monitor are produced using combinations of red, green, and blue.

A monitor that allows 256 voltage settings for each of R, G, and B is known as a **full-color system**.

The description of each color in framebuffer memory is known as a **channel**.
Specifying colors

The number of color choices depends on the amount of framebuffer storage allocated per pixel.

Q: How many colors can be displayed with:

- 3 bits per pixel?
- 8 bits per pixel?
- 24 bits per pixel?

16 bpp systems often allocate 5 bits to red, 6 to green, and 5 to blue. Why does green get the extra bit?
The term **true-color** is sometimes used to refer to systems which the framebuffer directly stores the values of each channel.
Color tables

Color tables allow more color versatility when you only have a few bits per pixel. You get to select a small palette of from a large number of available colors.

Each framebuffer element is now an index into the color table, where the actual values of each channel are stored.

- Color table entries can be changed in software.
Color tables on 24-bit systems

Even full-color systems often use color tables. In this case, there is a separate color table for each 8 bit channel.

Most SGI workstations are like this.

Q: Why would you want this capability?
Double-buffering

Q: What happens when you write to the framebuffer while it is being displayed on the monitor?

Double-buffering provides a solution.
Summary

Here’s what you should take home from this lecture:

- The basic components of black-and-white and color CRTs
- All of the **boldfaced terms**
- Computing screen resolution & framebuffer size
- The correspondence between elements of framebuffer memory and pixels on-screen
- How color tables work
- How double-buffering works