Shading

CSE 457
Winter 2015
Reading

Required:

- Angel chapter 5.

Optional:

Basic 3D graphics

With affine matrices, we can now transform virtual 3D objects in their local coordinate systems into a global (world) coordinate system:

To synthesize an image of the scene, we also need to add light sources and a viewer/camera:
To create an image of a virtual scene, we need to define a camera, and we need to model lighting and shading. For the camera, we use a pinhole camera.

The image is rendered onto an image plane (usually in front of the camera).

Viewing rays emanate from the center of projection (COP) at the center of the pinhole.

The image of an object point P is at the intersection of the viewing ray through P and the image plane.

But is P visible? This the problem of hidden surface removal (a.k.a., visible surface determination). We’ll consider this problem later.

Pinhole camera

[Angel, 2011]
Shading

Next, we’ll need a model to describe how light interacts with surfaces.

Such a model is called a **shading model**.

Other names:

- Lighting model
- Light reflection model
- Local illumination model
- Reflectance model
- BRDF
An abundance of photons

Given the camera and shading model, properly determining the right color at each pixel is extremely hard. Look around the room. Each light source has different characteristics. Trillions of photons are pouring out every second.

These photons can:

- interact with molecules and particles in the air (“participating media”)
- strike a surface and
 - be absorbed
 - be reflected (scattered)
 - cause fluorescence or phosphorescence.
- interact in a wavelength-dependent manner
- generally bounce around and around
Approximation of reality: Phong and Blinn-Phong illumination models.

They have the following characteristics:

- *not* physically correct
- gives a “first-order” *approximation* to physical light reflection
- very fast
- widely used

We will assume a local illumination model: light->surface->viewer

No interreflections, no shadows.
Setup...

Given:
- a point P on a surface visible through pixel p
- The normal N at P
- The lighting direction, L, and (color) intensity, I_L, at P
- The viewing direction, V, at P
- The shading coefficients at P

Compute the color, I, of pixel p.

Assume that the direction vectors are normalized:

$$\|N\| = \|L\| = \|V\| = 1$$
Our lighting model includes the following components

Surface color =

Emissive +

Ambient +

Diffuse +

Specular

Next we will talk about each of these in more detail...
Emissive

The simplest thing you can do is…

Assign each polygon a single color:

\[I = k_e \]

where

- \(I \) is the resulting intensity
- \(k_e \) is the **emissivity** or intrinsic shade associated with the object

This has some special-purpose uses, like to represent glowing objects. But not really good for drawing a scene. For example: light bulb can have its own color.

[Note: \(k_e \) is omitted in Angel.]
Ambient

Let’s make the color at least dependent on the overall quantity of light available in the scene:

\[I = k_e + k_a I_{La} \]

- \(k_a \) is the **ambient reflection coefficient**.
 - really the reflectance of ambient light
 - “ambient” light is assumed to be equal in all directions
- \(I_{La} \) is the **ambient light intensity**.

Physically, what is “ambient” light?

[Note: Angel uses \(L_a \) instead of \(I_{La} \).]
Wavelength dependence

Really, k_e, k_a, and I_{La} are functions over all wavelengths λ.

Ideally, we would do the calculation on these functions. For the ambient shading equation, we would start with:

$$I(\lambda) = k_a(\lambda)I_{La}(\lambda)$$

then we would find good RGB values to represent the spectrum $I(\lambda)$.

Traditionally, though, k_a and I_{La} are represented as RGB triples, and the computation is performed on each color channel separately:

$$I^R = k_a^R I_{La}^R$$
$$I^G = k_a^G I_{La}^G$$
$$I^B = k_a^B I_{La}^B$$
Let’s examine the ambient shading model:

- objects have different colors
- we can control the overall light intensity
 - what happens when we turn off the lights?
 - what happens as the light intensity increases?
 - what happens if we change the color of the lights?

So far, objects are uniformly lit.

- not the way things really appear
- in reality, light sources are localized in position or direction

Diffuse, or **Lambertian** reflection will allow reflected intensity to vary with the direction of the light.
Our lighting model includes the following components

Surface color =

Emissive +
Ambient +
Diffuse(L) +
Specular(L,V)
Our lighting model includes the following components

Surface color =

Emissive +
Ambient +

For each light L:

Diffuse(L) +
Specular(L,V)
Intro to specular and diffuse reflection
The law of reflection

Specular reflection:

Smooth surface causes reflected rays to travel in the same direction
Specular reflection
The surface is so smooth in a calm lake that all the reflected rays bounce off in the same direction.
Ripples because of wind causes rough surface => reflected rays travel in different directions
Most everyday objects have diffuse reflection because of tiny roughness of the surface
Diffuse reflectors

Diffuse reflection occurs from dull, matte surfaces, like latex paint, or chalk.

These *diffuse* or *Lambertian* reflectors reradiate light equally in all directions.

Picture a rough surface with lots of tiny *microfacets*.
Diffuse reflectors

...or picture a surface with little pigment particles embedded beneath the surface (neglect reflection at the surface for the moment):

![Diagram of diffuse reflectors]

The microfacets and pigments distribute light rays in all directions.

Embedded pigments are responsible for the coloration of diffusely reflected light in plastics and paints.

Note: the figures above are intuitive, but not strictly (physically) correct.
Diffuse reflectors, cont.

The reflected intensity from a diffuse surface does not depend on the direction of the viewer. The incoming light, though, does depend on the direction of the light source:

\[\cos \theta = \mathbf{N} \cdot \mathbf{L} \]
Diffuse reflection

The incoming energy is proportional to $\cos \theta$, giving the diffuse reflection equations:

$$I = k_e + k_a I_a + k_d I_L B(\cos \theta)$$

$$= k_e + k_a I_a + k_d I_L B(N \cdot L)$$

where:

- k_d is the **diffuse reflection coefficient**
- I_L is the (color) intensity of the light source
- N is the normal to the surface (unit vector)
- L is the direction to the light source (unit vector)
- B prevents contribution of light from below the surface:

$$B = \begin{cases} 1 & \text{if } N \cdot L > 0 \\ 0 & \text{if } N \cdot L \leq 0 \end{cases}$$

[Note: Angel uses L_d instead of I_L and f instead of B.]
Our lighting model includes the following components

Surface color =

\(\text{Emissive} + \) \\
\(\text{Ambient} + \) \\
For each light \(L \):

\(\text{Diffuse}(L) + \) \\
\(\text{Specular}(L,V) \)
Specular reflection

Specular reflection accounts for the highlight that you see on some objects.

It is particularly important for smooth, shiny surfaces, such as:

- metal
- polished stone
- plastics
- apples
- skin

Properties:

- Specular reflection depends on the viewing direction \mathbf{V}.
- For non-metals, the color is determined solely by the color of the light.
- For metals, the color may be altered (e.g., brass)
Specular reflection “derivation”

For a perfect mirror reflector, light is reflected about \mathbf{N}, so

$$I = \begin{cases} I_L & \text{if } \mathbf{V} = \mathbf{R} \\ 0 & \text{otherwise} \end{cases}$$

For a near-perfect reflector, you might expect the highlight to fall off quickly with increasing angle ϕ.

Also known as:

- “rough specular” reflection
- “directional diffuse” reflection
- “glossy” reflection
Phong specular reflection

One way to get this effect is to take $(\mathbf{R} \cdot \mathbf{V})$, raised to a power n_s.

As n_s gets larger,
- the dropoff becomes {more, less} gradual
- gives a {larger, smaller} highlight
- simulates a {more, less} mirror-like surface

Phong specular reflection is proportional to:

$$ I_{\text{specular}} \sim B (\mathbf{R} \cdot \mathbf{V})^{n_s} $$

where $(x)_+ \equiv \max(0, x)$.
Blinn-Phong specular reflection

A common alternative for specular reflection is the Blinn-Phong model (sometimes called the modified Phong model.)

We compute the vector halfway between \(\mathbf{L} \) and \(\mathbf{V} \) as:

\[
\mathbf{H} = \frac{1}{2} \frac{(\mathbf{L} + \mathbf{V})}{\| (\mathbf{L} + \mathbf{V}) \|}
\]

Analogous to Phong specular reflection, we can compute the specular contribution in terms of \((\mathbf{N} \cdot \mathbf{H})\), raised to a power \(n_s\):

\[
I_{\text{specular}} = B (\mathbf{N} \cdot \mathbf{H})^{n_s}
\]

where, again, \((x)_+ \equiv \max(0, x)\).
The next update to the Blinn-Phong shading model is then:

\[
I = k_e + k_a I_a + k_d I_d B(N \cdot L) + k_s I_s B(N \cdot H)^n_s
\]

\[
= k_e + k_a I_a + I_L B[k_d (N \cdot L) + k_s (N \cdot H)^n_s]
\]

where:

- \(k_s\) is the **specular reflection coefficient**
- \(n_s\) is the **specular exponent** or **shininess**
- \(H\) is the unit halfway vector between \(L\) and \(V\), where \(V\) is the viewing direction.

[Note: Angel uses \(a\) instead of \(n_s\) and maintains a separate \(I_d\) and \(I_s\), instead of a single \(I_L\). This choice reflects the flexibility available in OpenGL.]
Directional lights

The simplest form of lights supported by renderers are ambient, directional, and point. Spotlights are also supported often as a special form of point light.

We’ve seen ambient light sources, which are not really geometric.

Directional light sources have a single direction and intensity associated with them.

Using affine notation, what is the homogeneous coordinate for a directional light?
Point lights

The direction of a **point light** source is determined by the vector from the light position to the surface point.

Physics tells us the intensity must drop off inversely with the square of the distance:

\[
f_{\text{atten}} = \frac{1}{r^2}
\]

Sometimes, this distance-squared dropoff is considered too “harsh.” A common alternative is:

\[
f_{\text{atten}} = \frac{1}{a + br + cr^2}
\]

with user-supplied constants for \(a, b,\) and \(c\).

Using affine notation, what is the homogeneous coordinate for a point light?
Spotlights

We can also apply a directional attenuation of a point light source, giving a spotlight effect.

A common choice for the spotlight intensity is:

\[
\begin{align*}
 f_{\text{spot}} &= \begin{cases}
 \frac{(L \cdot S)^e}{a + br + cr^2} & \alpha \leq \beta \\
 0 & \text{otherwise}
 \end{cases}
\end{align*}
\]

where

- \(L \) is the direction to the point light.
- \(S \) is the center direction of the spotlight.
- \(\alpha \) is the angle between \(L \) and \(S \)
- \(\beta \) is the cutoff angle for the spotlight
- \(e \) is the angular falloff coefficient

Note: \(\alpha \leq \beta \iff \cos^{-1}(L \cdot S) \leq \beta \iff L \cdot S \geq \cos \beta. \)
Additive lights

Since light is additive, we can handle multiple lights by taking the sum over every light.

Our equation is now:

\[I = k_e + k_a L_a + \sum_j \frac{\left(L_j \cdot S_j\right)^{e_j}}{a_j + b_j r_j + c_j r_j^2} \beta_j I_{L,j} B_j \left[k_d (N \cdot L_j) + k_s (N \cdot H_j)^{n_s} \right] \]

This is the Blinn-Phong illumination model (for spotlights).

Which quantities are spatial vectors?

Which are RGB triples?

Which are scalars?
Shading in OpenGL

The OpenGL lighting model allows you to associate different lighting colors according to material properties they will influence.

Thus, our original shading equation (for point lights):

$$ I = k_e + k_a I_{La} + \sum_j \frac{1}{a_j + b_j r_j + c_j r_j^2} I_{L,j} B_j \left[k_d (N \cdot L_j) + k_s (N \cdot H_j)^{n_s} \right] $$

becomes:

$$ I = k_e + k_a I_{La} + \sum_j \frac{1}{a_j + b_j r_j + c_j r_j^2} \left[k_a I_{La,j} + B_j \left\{ k_d I_{Ld,j} (N \cdot L_j) + k_s I_{Ls,j} (N \cdot H_j)^{n_s} \right\} \right] $$

where you can have a global ambient light with intensity I_{La} in addition to having an ambient light intensity I_{Laj} associated with each individual light, as well as separate diffuse and specular intensities, $I_{Ld,j}$ and $I_{Ls,j}$ respectively.
Materials in OpenGL

The OpenGL code to specify the surface shading properties is fairly straightforward. For example:

```c
GLfloat ke[] = { 0.1, 0.15, 0.05, 1.0 };
GLfloat ka[] = { 0.1, 0.15, 0.1, 1.0 };
GLfloat kd[] = { 0.3, 0.3, 0.2, 1.0 };
GLfloat ks[] = { 0.2, 0.2, 0.2, 1.0 };
GLfloat ns[] = { 50.0 };
glMaterialfv(GL_FRONT, GL_EMISSION, ke);
glMaterialfv(GL_FRONT, GL_AMBIENT, ka);
glMaterialfv(GL_FRONT, GL_DIFFUSE, kd);
glMaterialfv(GL_FRONT, GL_SPECULAR, ks);
glMaterialfv(GL_FRONT, GL_SHININESS, ns);
```

Notes:

- The `GL_FRONT` parameter tells OpenGL that we are specifying the materials for the front of the surface.
- Only the alpha value of the diffuse color is used for blending. It’s usually set to 1.
Shading in OpenGL, cont’d

In OpenGL this equation, for one light source (the 0th) is specified something like:

```c
GLfloat La[] = { 0.2, 0.2, 0.2, 1.0 };  // ambient
GLfloat La0[] = { 0.1, 0.1, 0.1, 1.0 };  // ambient
GLfloat Ld0[] = { 1.0, 1.0, 1.0, 1.0 };  // diffuse
GLfloat Ls0[] = { 1.0, 1.0, 1.0, 1.0 };  // specular
GLfloat pos0[] = { 1.0, 1.0, 1.0, 0.0 };  // position
GLfloat a0[] = { 1.0 };  // constant attenuation
GLfloat b0[] = { 0.5 };  // linear attenuation
GLfloat c0[] = { 0.25 };  // quadratic attenuation
GLfloat S0[] = { -1.0, -1.0, 0.0 };  // direction
GLfloat beta0[] = { 45 };  // spot cutoff
GLfloat e0[] = { 2 };  // spot exponent

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, La);
gLightfv(GL_LIGHT0, GL_AMBIENT, La0);
gLightfv(GL_LIGHT0, GL_DIFFUSE, Ld0);
gLightfv(GL_LIGHT0, GL_SPECULAR, Ls0);
gLightfv(GL_LIGHT0, GL_POSITION, pos0);
gLightfv(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a0);
gLightfv(GL_LIGHT0, GL_LINEAR_ATTENUATION, b0);
gLightfv(GL_LIGHT0, GL_QUADRATIC_ATTENUATION, c0);
gLightfv(GL_LIGHT0, GL_SPOT_DIRECTION, S0);
gLightf(GL_LIGHT0, GL_SPOT_CUTOFF, beta0);
gLightf(GL_LIGHT0, GL_SPOT_EXPONENT, e0);
```
Shading in OpenGL, cont’d

Notes:

You can have as many as GL_MAX_LIGHTS lights in a scene. This number is system-dependent.

For directional lights, you specify a light direction, not position, and the attenuation and spotlight terms are ignored.

The directions of directional lights and spotlights are specified in the coordinate systems of the lights, not the surface points as we’ve been doing in lecture.
3D Geometry in the Graphics Hardware Pipeline

Graphics hardware applies transformations to bring the objects and lighting into the camera’s coordinate system:

The geometry is assumed to be made of triangles, and the **vertices** are projected onto the image plane.
Rasterization

After projecting the vertices, graphics hardware “smears” vertex properties across the interior of the triangle in a process called \textit{rasterization}.

Smearing the z-values and using a Z-buffer will enable the graphics hardware to determine if a point inside a triangle is visible. (More on this in another lecture.)

If we have stored colors at the vertices, then we can smear these as well.
The diagram illustrates the RGB color space with the following points:

- RGB
 - (0,0,1)
 - (1,0,0)
 - (0,1,0)

The point (1,0,0) is connected to the midpoint of the line segment between (0,0,1) and (0,1,0), given by
\[
\frac{(1,0,0) + (0,0,1)}{2} = \left(\frac{1}{2}, 0, \frac{1}{2} \right)
\]
Let’s consider each channel separately:
Shading the interiors of triangles

We will be computing colors using the Blinn-Phong lighting model.

Let’s assume (as graphics hardware does) that we are working with triangles.

How should we shade the interiors of triangles?
Shading with per-face normals

Assume each face has a constant normal:

\[
I = k_d (N \cdot L) + k_s \left(\frac{N \cdot (V + L)}{||L||} \right)^{k_s}
\]

For a distant viewer and a distant light source and constant material properties over the surface, how will the color of each triangle vary?
Faceted shading (cont’d)

[Williams and Siegel 1990]
Gouraud interpolation

To get a smoother result that is easily performed in hardware, we can do Gouraud interpolation.

Here’s how it works:

1. Compute normals at the vertices.
2. Shade only the vertices.
3. Interpolate the resulting vertex colors.
Facted shading vs. Gouraud interpolation

[Williams and Siegel 1990]
Gouraud interpolation artifacts

Gouraud interpolation has significant limitations.

1. If the polygonal approximation is too coarse, we can miss specular highlights.

\[
\frac{I_1 + I_2}{2}
\]

2. We will encounter Mach banding (derivative discontinuity enhanced by human eye).

\[
\frac{1}{2}(L \cdot N_1 + L \cdot N_2) = L^T \left(\frac{N_1 + N_2}{2} \right)
\]

This is what graphics hardware does by default.

A substantial improvement is to do…
Phong interpolation

To get an even smoother result with fewer artifacts, we can perform **Phong interpolation**.

Here’s how it works:

1. Compute normals at the vertices.
2. Interpolate normals and normalize.
3. Shade using the interpolated normals.
Gouraud vs. Phong interpolation

[Williams and Siegel 1990]
Default pipeline: Gouraud interpolation

Default vertex processing:
- $L \leftarrow$ determine lighting direction
- $V \leftarrow$ determine viewing direction
- $N \leftarrow$ normalize(n_v)
- $c_{\text{blinn-phong}} \leftarrow$ shade with L, V, N, k_d, k_s, n_s
- attach $c_{\text{blinn-phong}}$ to vertex as “varying”
- $v_i \leftarrow$ project v to image

$\mathbf{v}_i^1, \mathbf{v}_i^2, \mathbf{v}_i^3 \rightarrow$ triangle

Default fragment processing:
- color $\leftarrow c_p^{\text{blinn-phong}}$

$\mathbf{v}_p^1, c_p^{\text{blinn-phong}}$

$\mathbf{v}_p^2, c_p^{\text{blinn-phong}}$

$\mathbf{v}_p^3, c_p^{\text{blinn-phong}}$
Programmable pipeline: Phong-interpolated normals!

Vertex shader:
- attach n_e to vertex as “varying”
- attach v_e to vertex as “varying”
- $v_i \leftarrow$ project v to image

$$v^1_i, v^2_i, v^3_i \rightarrow \text{triangle}$$

Fragment shader:
- $L \leftarrow$ determine lighting direction
- $V \leftarrow$ determine viewing direction
- $N \leftarrow$ normalize(n_i^p)
- color \leftarrow shade with $L, V, N, k_d^p, k_s^p, n_s^p$
Choosing Blinn-Phong shading parameters

Experiment with different parameter settings. To get you started, here are a few suggestions:

- Try \(n_s \) in the range \([0,100]\)
- Try \(k_a + k_d + k_s < 1 \)
- Use a small \(k_a \) (\(\sim 0.1 \))

<table>
<thead>
<tr>
<th></th>
<th>(n_s)</th>
<th>(k_d)</th>
<th>(k_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal</td>
<td>large</td>
<td>Small, color of metal</td>
<td>Large, color of metal</td>
</tr>
<tr>
<td>Plastic</td>
<td>medium</td>
<td>Medium, color of plastic</td>
<td>Medium, white</td>
</tr>
<tr>
<td>Planet</td>
<td>0</td>
<td>varying</td>
<td>0</td>
</tr>
</tbody>
</table>
BRDF

The diffuse+specular parts of the Blinn-Phong illumination model are a mapping from light to viewing directions:

\[I = I_B \left[k_d (\mathbf{N} \cdot \mathbf{L}) + k_s \mathbf{N} \cdot \left(\frac{\mathbf{L} + \mathbf{V}}{||\mathbf{L} + \mathbf{V}||} \right)^{n_s} \right] \]

The mapping function \(f_r \) is often written in terms of incoming (light) directions \(\omega_{in} \) and outgoing (viewing) directions \(\omega_{out} \):

\[f_r(\omega_{in}, \omega_{out}) \quad \text{or} \quad f_r(\omega_{in} \rightarrow \omega_{out}) \]

This function is called the Bi-directional Reflectance Distribution Function (BRDF).

Here’s a plot with \(\omega_{in} \) held constant:

BRDF’s can be quite sophisticated…
More sophisticated BRDF’s

[Anisotropic BRDFs [Westin, Arvo, Torrance 1992]]

[Artistics BRDFs [Gooch]]
Summary

You should understand the equation for the Blinn-Phong lighting model

- What is the physical meaning of each variable?
- How are the terms computed?
- What effect does each term contribute to the image?
- What does varying the parameters do?

You should also understand the differences between faceted, Gouraud, and Phong interpolated shading.

And you should understand how to compute the normal to a surface of revolution.