Affine Transformations

CSE 457
Winter 2015
Reading

Required:

- Angel 3.1, 3.7-3.11

Further reading:

- Angel, the rest of Chapter 3
- Foley, et al, Chapter 5.1-5.5.
Geometric transformations

Geometric transformations will map points in one space to points in another:
\[(x', y', z') = f(x, y, z).\]

These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations.
Vector representation

We can represent a point, \(p = (x,y) \), in the plane or \(p=(x,y,z) \) in 3D space

- as column vectors

\[
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
\]

- as row vectors

\[
\begin{bmatrix}
x & y \\
x & y & z
\end{bmatrix}
\]
Canonical axes
Vector length and dot products
Vector cross products
Representation, cont.

We can represent a **2-D transformation** M by a matrix

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\]

If p is a column vector, M goes on the left:

\[
p' = Mp
\]

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

If p is a row vector, M^T goes on the right:

\[
p' = pM^T
\]

\[
\begin{bmatrix}
 x' & y'
\end{bmatrix} = \begin{bmatrix}
 x & y
\end{bmatrix} \begin{bmatrix}
 a & c \\
 b & d
\end{bmatrix}
\]

We will use **column vectors**.
Two-dimensional transformations

Here's all you get with a 2 x 2 transformation matrix M:

$$
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix}
$$

So:

$$
x' = ax + by \\
y' = cx + dy
$$

We will develop some intimacy with the elements $a, b, c, d...$
Identity

Suppose we choose $a=d=1, b=c=0$:

- Gives the **identity** matrix:

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

- Doesn't move the points at all
Scaling

Suppose we set $b=c=0$, but let a and d take on any positive value:

- Gives a **scaling** matrix:

$$
\begin{bmatrix}
 a & 0 \\
 0 & d
\end{bmatrix}
$$

- Provides **differential (non-uniform) scaling** in x and y:

 \[x' = ax \]
 \[y' = dy \]
Suppose we keep \(b=c=0 \), but let either \(a \) or \(d \) go negative.

Examples:

\[
\begin{bmatrix}
-1 & 0 \\
0 & 1 \\
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
1 & 0 \\
0 & -1 \\
\end{bmatrix}
\]
Now let's leave $a=d=1$ and experiment with b.

The matrix
\[
\begin{bmatrix}
1 & b \\
0 & 1
\end{bmatrix}
\]
gives:

\[
x' = x + by \\
y' = y
\]
Effect on unit square

Let's see how a general 2 x 2 transformation M affects the unit square:

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 p & q & r & s
\end{bmatrix}
= \begin{bmatrix}
 p' & q' & r' & s'
\end{bmatrix}
\]

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 0 & 1 & 1 & 0
\end{bmatrix}
= \begin{bmatrix}
 0 & a & a+b & b
\end{bmatrix}
\]

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 0 & 0 & 1 & 1
\end{bmatrix}
= \begin{bmatrix}
 0 & c & c+d & d
\end{bmatrix}
\]
Effect on unit square, cont.

Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners $(1,0)$ and $(0,1)$ are mapped
- a and d give x- and y-scaling
- b and c give x- and y-shearing
Rotation

From our observations of the effect on the unit square, it should be easy to write down a matrix for “rotation about the origin”:

\[
\begin{bmatrix}
1 \\
0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
0 \\
1
\end{bmatrix}
\]

Thus,

\[
M = R(\theta) = \begin{bmatrix}
\end{bmatrix}
\]
Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?
Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a third component to every point:

\[
\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]

Adding the third “w” component puts us in homogenous coordinates.

And then transform with a 3 x 3 matrix:

\[
\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = T(t) \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]

... gives translation!
Anatomy of an affine matrix

The addition of translation to linear transformations gives us **affine transformations**.

In matrix form, 2D affine transformations always look like this:

\[
M = \begin{bmatrix}
 a & b & t_x \\
 c & d & t_y \\
 0 & 0 & 1
\end{bmatrix}
= \begin{bmatrix}
 A & t \\
 0 & 0 & 1
\end{bmatrix}
\]

2D affine transformations always have a bottom row of \([0\ 0\ 1]\).

An “affine point” is a “linear point” with an added \(w\)-coordinate which is always 1:

\[
p_{\text{aff}} = \begin{bmatrix}
 p_{\text{lin}} \\
 1
\end{bmatrix}
= \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Applying an affine transformation gives another affine point:

\[
M p_{\text{aff}} = \begin{bmatrix}
 A p_{\text{lin}} + t \\
 1
\end{bmatrix}
\]
Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, \(q \), about any point \(q = [q_x \ q_y]^T \) with a matrix:

1. Translate \(q \) to origin
2. Rotate
3. Translate back

Note: Transformation order is important!!
Points and vectors

Vectors have an additional coordinate of $w=0$. Thus, a change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine matrix?

These representations reflect some of the rules of affine operations on points and vectors:

- `vector + vector` →
- `scalar \cdot vector` →
- `point - point` →
- `point + vector` →
- `point + point` →

One useful combination of affine operations is:

$$p(t) = p_o + tu$$

Q: What does this describe?
Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D ones.

For example, scaling:

\[
\begin{bmatrix}
 x' \\
y' \\
z' \\
1
\end{bmatrix} =
\begin{bmatrix}
s_x & 0 & 0 & 0 \\
0 & s_y & 0 & 0 \\
0 & 0 & s_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Translation in 3D

\[
\begin{bmatrix}
 x' \\
y' \\
z'
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 & t_x \\
 0 & 1 & 0 & t_y \\
 0 & 0 & 1 & t_z \\
 0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
\]
Rotation in 3D (cont’d)

These are the rotations about the canonical axes:

\[
R_x(\alpha) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha & 0 \\
0 & \sin \alpha & \cos \alpha & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
R_y(\beta) = \begin{bmatrix}
\cos \beta & 0 & \sin \beta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \beta & 0 & \cos \beta & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
R_z(\gamma) = \begin{bmatrix}
\cos \gamma & -\sin \gamma & 0 & 0 \\
\sin \gamma & \cos \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

A general rotation can be specified in terms of a product of these three matrices. How else might you specify a rotation?
Shearing in 3D

Shearing is also more complicated. Here is one example:

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} = \begin{bmatrix}
 1 & b & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z \\
 1
\end{bmatrix}
\]

We call this a shear with respect to the x-z plane.
Properties of affine transformations

Here are some useful properties of affine transformations:

- Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)

\[
\begin{align*}
\text{ratio} &= \frac{pq}{qr} = \frac{s}{t} = \frac{p'q'}{q'r'}
\end{align*}
\]
Affine transformations in OpenGL

OpenGL maintains a “modelview” matrix that holds the current transformation \(M \).

The modelview matrix is applied to points (usually vertices of polygons) before drawing.

It is modified by commands including:

- **glLoadIdentity()** \(M \leftarrow I \)
 - set \(M \) to identity

- **glTranslatef(\(t_x \), \(t_y \), \(t_z \))** \(M \leftarrow MT \)
 - translate by \((t_x, t_y, t_z) \)

- **glRotatef(\(\theta \), \(x \), \(y \), \(z \))** \(M \leftarrow MR \)
 - rotate by angle \(\theta \) about axis \((x, y, z) \)

- **glScalef(\(s_x \), \(s_y \), \(s_z \))** \(M \leftarrow MS \)
 - scale by \((s_x, s_y, s_z) \)

Note that OpenGL adds transformations by *postmultiplication* of the modelview matrix.
Summary

What to take away from this lecture:

- All the names in boldface.
- How points and transformations are represented.
- How to compute lengths, dot products, and cross products of vectors, and what their geometrical meanings are.
- What all the elements of a 2 x 2 transformation matrix do and how these generalize to 3 x 3 transformations.
- What homogeneous coordinates are and how they work for affine transformations.
- How to concatenate transformations.
- The mathematical properties of affine transformations.