Texture Mapping

Brian Curless
CSE 457
Spring 2015

Texture mapping (Woo et al., fig. 9.1)

Texture mapping allows you to take a simple polygon and give it the appearance of something much more complex.

- Due to Ed Catmull, PhD thesis, 1974
- Refined by Blinn & Newell, 1976

A texture can modulate just about any parameter – diffuse color, specular color, specular exponent, ...

Implementing texture mapping

A texture lives in its own abstract image coordinates parameterized by \((s, t)\) in the range \([0..1], [0..1]\):

It can be wrapped around many different surfaces:

With a ray caster, we can do the sphere and cylinder mappings directly (as we will see later). For z-buffers, everything gets converted to a triangle mesh with associated \((s, t)\) coordinates.

Note: if the surface moves/deforms, the texture goes with it.

Reading

Required
- Angel, 7.4-7.10

Recommended

Optional
- Woo, Neider, & Davis, Chapter 9
Texture coordinates on a surface of revolution

\[\phi_n = \frac{2\pi n}{N} \]

Mapping to texture image coords

The texture is usually stored as an image. Thus, we need to convert from abstract texture coordinate:

\[(s, t) \in [0..1, 0..1] \]

to texture image coordinates:

\[(s_{\text{tex}}, t_{\text{tex}}) \in [0..w_{\text{tex}}, 0..h_{\text{tex}}] \]

Q: What do you do when the texture sample you need lands between texture pixels?

Texture resampling

We need to resample the texture:

Thus, we seek to solve for: \(T(a, b) = T(i + \Delta_i, j + \Delta_j) \)

A common choice is \textit{bilinear interpolation}:

\[
T(i + \Delta_i, j + \Delta_j) = (1 - \Delta_i) T(i, j) + \Delta_i T(i + 1, j)
\]

\[
T(i + \Delta_i, j) = (1 - \Delta_i) T(i, j) + \Delta_i T(i + 1, j)
\]

\[
T(i + \Delta_i, j + 1) = (1 - \Delta_i) T(i, j + 1) + \Delta_i T(i + 1, j + 1)
\]

\[
T(i + \Delta_i, j + \Delta_j) = (1 - \Delta_i)(1 - \Delta_j) T(i, j) + \Delta_i (1 - \Delta_j) T(i + 1, j) + \\
\Delta_i \Delta_j T(i + 1, j + 1)
\]

Texture mapping and the z-buffer

Texture-mapping can also be handled in z-buffer algorithms.

Method:
- Scan conversion is done in screen space, as usual
- Each pixel is colored according to the texture
- Texture coordinates are found by Gouraud-style interpolation

\[((x_0, y_0, z_0), (x_1, y_1, z_1), (x_2, y_2, z_2)) \]

Note: Mapping is more complicated to handle perspective correctly!
Displacement mapping

Textures can be used for more than just color.

In displacement mapping, a texture is used to perturb the surface geometry itself. Here’s the idea in 2D:

- These displacements “animate” with the surface
- In 3D, you would of course have (s, t) parameters instead of just s.

Suppose Q is a simple surface, like a cube. Will it take more work to render the modified surface \tilde{Q}? **Yes**

Bump mapping

In bump mapping, a texture is used to perturb the normal:

- Use the original, simpler geometry, $Q(s)$, for hidden surfaces
- Use the normal from the displacement map for shading:

$$\tilde{N} = \text{normal}[\tilde{Q}(s)]$$

What artifacts in the images would reveal that bump mapping is fake? **Silhouettes, perspective, cast shadows**
Solid textures

Q: What kinds of artifacts might you see from using a marble veneer instead of real marble?

One solution is to use **solid textures**:

- Use model-space coordinates to index into a 3D texture
- Like "carving" the object from the material

One difficulty of solid texturing is coming up with the textures.

Solid textures (cont’d)

Here's an example for a vase cut from a solid marble texture:

Environment mapping

In **environment mapping** (also known as **reflection mapping**), a texture is used to model an object's environment:

- Rays are bounced off objects into environment
- Color of the environment used to determine color of the illumination
- Environment mapping works well when there is just a single object – or in conjunction with ray tracing

This can be readily implemented (without interreflection) using a fragment shader, where the texture is stored in a "cube map" instead of a sphere.

With a ray tracer, the concept is easily extended to handle refraction as well as reflection (and interreflection).
Summary

What to take home from this lecture:

1. The meaning of the boldfaced terms.
2. Familiarity with the various kinds of texture mapping, including their strengths and limitations.