Texture Mapping

CSE 457
Winter 2014

Texture mapping

Texture mapping allows you to take a simple polygon and give it the appearance of something much more complex.

- Due to Ed Catmull, PhD thesis, 1974
- Refined by Blinn & Newell, 1976

A texture can modulate just about any parameter – diffuse color, specular color, specular exponent, ...

Implementing texture mapping

A texture lives in its own abstract image coordinates paramaterized by \((s, t)\) in the range \([0..1], [0..1]\):

It can be wrapped around many different surfaces:

With a ray caster, we can do the sphere and cylinder mappings directly (as we will see later). For z-buffers, everything gets converted to a triangle mesh with associated \((s, t)\) coordinates.

Note: if the surface moves/deforms, the texture goes with it.

Reading

Required
- Angel, 7.4-7.10

Recommended

Optional
- Woo, Neider, & Davis, Chapter 9
Texture coordinates on a surface of revolution

\[s = \theta / \Delta \theta \]
\[t = i / N \]
\[N = \# \text{samples} \]

\[t = \frac{i}{N} \sum_{j=1}^{j-1} d_{i,j-1} \]

\[s = \frac{1}{2} \sum_{j=1}^{j} d_{i,j} \]

\[\text{arc length parameter}. \]

Mapping to texture image coords

The texture is usually stored as an image. Thus, we need to convert from abstract texture coordinate:

\((s,t) \) in the range \([0..1],[0..1]\)

to texture image coordinates:

\((s_{\text{tex}}, t_{\text{tex}}) \) in the range \([0..w_{\text{tex}}],[0..h_{\text{tex}}]\)

Q: What do you do when the texture sample you need lands between texture pixels?

Texture resampling

We need to resample the texture:

Thus, we seek to solve for: \(T(i,j) = T(i+\Delta_x, j+\Delta_y) \)

A common choice is bilinear interpolation:

\[
T(i, j) = (1-\alpha)(1-\beta)T(i-1, j-1) + (1-\alpha)\beta T(i-1, j) + \alpha(1-\beta)T(i, j-1) + \alpha \beta T(i, j+1)
\]

\(\alpha \) and \(\beta \) are Gouraud-style interpolation weights.

Texture mapping and the z-buffer

Texture-mapping can also be handled in z-buffer algorithms.

Method:

- Scan conversion is done in screen space, as usual
- Each pixel is colored according to the texture
- Texture coordinates are found by Gouraud-style interpolation

Note: Mapping is more complicated to handle perspective correctly!
Displacement mapping

Textures can be used for more than just color. In **displacement mapping**, a texture is used to perturb the surface geometry itself. Here’s the idea in 2D:

- These displacements “animate” with the surface
- In 3D, you would of course have (s,t) parameters instead of just s.

Suppose \(Q \) is a simple surface, like a cube. Will it take more work to render the modified surface \(Q' \)?

Bump mapping

In **bump mapping**, a texture is used to perturb the normal:

- Use the original, simpler geometry, \(Q(s) \), for hidden surfaces
- Use the normal from the displacement map for shading:

\[
\bar{N} = \text{normal}[Q(s)]
\]

What artifacts in the images would reveal that bump mapping is a fake?

- No silhouettes
- No occlusions
- Perspective effects

Displacement vs. bump mapping

Input texture

Rendered as displacement map over a rectangular surface

Original rendering

Rendering with bump map wrapped around a cylinder

Bump map and rendering by Wyvern Aldinger
Solid textures

Q: What kinds of artifacts might you see from using a marble veneer instead of real marble?

One solution is to use solid textures:

- Use model-space coordinates to index into a 3D texture
- Like "carving" the object from the material

One difficulty of solid texturing is coming up with the textures.

Solid textures (cont'd)

Here's an example for a vase cut from a solid marble texture:

Solid marble texture by Ken Perlin, (Foley, IV-21)

Solid textures (cont'd)

Environment mapping

In environment mapping (also known as reflection mapping), a texture is used to model an object's environment:

- Rays are bounced off objects into environment
- Color of the environment used to determine color of the illumination
- Environment mapping works well when there is just a single object – or in conjunction with ray tracing

This can be readily implemented (without interreflection) using a fragment shader, where the texture is stored in a "cube map" instead of a sphere.

With a ray tracer, the concept is easily extended to handle refraction as well as reflection (and interreflection).
Summary

What to take home from this lecture:

1. The meaning of the boldfaced terms.
2. Familiarity with the various kinds of texture mapping, including their strengths and limitations.