Reading

Required:

+ Angel readings for “Parametric Curves” lecture,
with emphasis on 10.1.2, 10.1.3, 10.1.5, 10.6.2,

Parametric surfaces 1073 1004
Optional
CSE 457 + Bartels, Beatty, and Barsky. An Introduction to
Winter 2014 Splines for use in Computer Graphics and Geometric
Modeling, 1987.
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Mathematical surface representations Surfaces of revolution

Recall that surfaces of revolution are based on theidea

+ Explicit z=flx,y) (a.k.a.a"height field") of rotating about an axis...

+ whatif the curveisn'tafunction, like a sphere?
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General sweep surfaces

The surface of revolution is a special case of a swept
surface.

Idea: Trace out surface S{u,v) by moving a profile
curve C{u) along a trajectory curve T(v).

More specifically:
+ Suppose that Clu) liesin an (x.y,) coordinate
system with origin O..

+ For every point along Tlv), lay C{u) so that O,
coincides with Tlv).

Orientation

The big issue:

+ How to orient C(u) as it moves along T(v)?

Here are two options:

1. Fixed (or static): Just translate O, along Tiv).

Sluv)

2. Moving. Use the Frenet frame of T{v).

+ Allows smoothly varying orientation.
+ Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve T{v), we want to attach a
smoothly varying coordinate system.

To geta 3D coordinate system, we need 3
independent direction vectors.

Tangent: t{v)=normalize[T'{v)]

Binormal: biv)=normalize[T (v)=T"(v)]

Normal:  n{v)=h{v)=tlv)
Aswe move along T(v), the Frenet frame (t,b,n) varies
smoothly.

Frenet swept surfaces

Orient the profile curve C{u) using the Frenet frame of
the trajectory Tiv):

+ Put C{u) in the normal plane .

+ Place O, on Tlv).

+ Align x. for C{u) with b.

+ Align y, for C{u) with -n.

Normal plane

.

If Tiv) is a circle, you get a surface of revolution exactly!




Degenerate frames
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Variations

Several variations are possible:
+ Scale Clu) as it moves, possibly using length of
Tiv) as a scale factor.

+ Morph Clu) into some other curve (f{u] asit
moves along Tiv).
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Polynomial form of Bézier surfaces

Recall that cubic Bézier curves can be written in terms of the
Bernstein polynomials:

C wres .
Qu)=3"Vbu)

A tensor product Bézier surface can be written as:

§\,\[ «chf/s S{uv)= ZZ Vb (u)b, (v)
T

In the previous slide, we constructed curves along u, and then
along v. This corresponds tore-grouping the terms like so:

Swv)=Y . Vb W) I. b, (v)

But, we could have constructed themalong v, then u:

suv)=3 [ Svb,m | b w

Tensor product B-spline surfaces

As with spline curves, we can piece togethera
sequence of Bézier surfaces to make a spline surface. If
we enforce C2 continuity and local control, we get B-
spline curves:

+ treatrows of B as control points to generate
Bézier control pointsin u.

+ treat Bézier control pointsin u as B-spline control
pointsin v.

+ treat B-spline control pointsin v to generate
Bézier control pointsin u.
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Tensor product B-spline surfaces, cont. Tensor product B-splines, cont.
Another example:
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NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS
surfaces.
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Trimmed NURBS surfaces

Sometimes, we want to have control over which parts
of a NURBS surface get drawn.

For example:
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We can do this by trimming the u-v domain.

+ Define a closed curve in the u-v domain (a trim
curve)

+ Do notdraw the surface pointsinside of this
curve,

It's really hard to maintain continuity in these regions,
especially while animating.
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Summary

What to take home:

+ How to construct swept surfaces from a profile
and trajectory curve:
+ with a fixed frame
+ with a Frenet frame
+ How to construct tensor product Bézier surfaces

+ How to construct tensor product B-spline
surfaces
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