Displays and framebuffers

CSE 457
Winter 2014

Slides based on Brian Curless' courses

Reading

Required
• Angel, sections 1.2, 2.1-2.7, 2.11.5

Optional
• OpenGL Programming Guide (the "red book" – available online):
 • First four sections of chapter 2
 • First section of chapter 6
• Foley et al., sections 1.3, 4.2-4.5

Modern graphics systems

[Angel, 2011]

Current graphics systems consist of:
• An application, which talks to a…
• Graphics library (e.g., OpenGL or Direct3D), which talks to the…
• Graphics hardware

The graphics hardware can do a lot of fancy work these days. We'll take a brief tour, starting from the display…

Light as an EM wave

We can model light as an electromagnetic wave:

The E and M fields are tightly coupled, so we usually just talk about the E field.

The orientation of the E field is the polarization. The example above is monochromatic (one wavelength) and linearly polarized (E field oscillates in a line, up and down in this case).
Light as an EM wave (cont’d)

Polychromatic, linearly polarized:

A linear polarizer is a filter that extracts the vector component of the light wave along a particular direction.

Laptops typically use **liquid crystal displays (LCD’s)**.

- Light enters a **vertical polarizer**
- **Nematic crystal** twists light based on applied voltage (more voltage, less twisting)
- Light passes through **horizontal polarizer**

Thin Film Transistors (TFTs), addressed by row and column, are used to hold a voltage at each cell.

There are variations on this design, but the polarization-rotating crystal always a key element.

Additive color mixing

All colors on a display are produced using combinations of red, green, and blue.

\[
\begin{align*}
R &= \text{red} \\
G &= \text{green} \\
B &= \text{blue}
\end{align*}
\]

Anatomy of an RGB image
LCD Color

Color is obtained using color filters:

- **Pixel**

![Diagram of Pixel](image1)

Backlight only | Backlight + front lighting

Pixel is one region on the display corresponding to one color sample of an image being shown.

Our eyes average the closely spaced RGB colors spatially to create the impression of a composite color at each pixel.

Electrophoretic Ink Displays

Most non-LCD/OLED electronic readers use **electrophoretic ink**. One of the biggest manufacturers is E Ink.

The idea is to embed charged white balls and oppositely charged black balls inside of tiny capsules. Applied voltages control how many white vs. black balls float to the viewing surface.

![Cross-Section of Electronic-Ink Microcapsules](image2)

This kind of display is **bistable**, which means that the image holds after removing the voltage.

A front light can be added for night reading.

RGB framebuffer

The brightness of each LCD element is controlled by a dedicated memory array called a **framebuffer**.

Each element of the framebuffer is associated with a single pixel on the screen.

![RGB framebuffer diagram](image3)

Typically, a display allows 256 voltage settings for each of R, G, and B.

We sometimes call each R, G, or B component a **channel** (so the “red channel” of an image is only the R component per pixel).
Double-buffering

Q: What happens when you write to the framebuffer while it is being displayed on the monitor?

Double-buffering provides a solution.

OpenGL

The API we'll be using for drawing to the framebuffer is OpenGL.

For 2D graphics, OpenGL lets you specify colors of primitives and then draw them to the screen. Typical primitives include:

- Points
- Lines
- Unfilled polygons
- Filled polygons

You just name a color, declare the primitive type, and specify the vertices, and OpenGL does the rest.

OpenGL also supports ‘alpha’ blending. A typical operation is a linear mixture that blends a new color into the framebuffer:

\[F_{\text{new}} = \alpha C + (1 - \alpha) F_{\text{old}} \]

where \(0 \leq \alpha \leq 1\).