Affine transformations

CSE 457 Winter 2014 Reading

Required:

• Angel 3.1, 3.7-3.11

Further reading:

- Angel, the rest of chapter 3
- Foley, et al, Chapter 5.1-5.5.
- David F. Rogers and J. Alan Adams, Mathematical Elements for Computer Graphics, 2nd Ed., McGraw-Hill, New York, 1990, Chapter 2.

1

Geometric transformations

Geometric transformations will map points in one space to points in another: (x', y', z') = f(x, y, z).

These transformations can be very simple, such as scaling each coordinate, or complex, such as non-linear twists and bends.

We'll focus on transformations that can be represented easily with matrix operations.

Vector representation

We can represent a **point**, $\mathbf{p} = (x,y)$, in the plane or $\mathbf{p} = (x,y,z)$ in 3D space

• as column vectors

as row vectors

$$\begin{bmatrix} x \\ y \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

20

ſv

Representation, cont.

We will develop some intimacy with the elements a, b, c, d...

Identity

Suppose we choose a=d=1, b=c=0:

• Gives the **identity** matrix:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad 2 \times 2 \qquad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• Doesn't move the points at all

10

9

Scaling

Suppose we set b=c=0, but let a and d take on any positive value:

· Gives a scaling matrix:

• Provides differential (non-uniform) scaling in x

Reflection, Missoring

Suppose we keep b=c=0, but let either a or d go negative.

Examples:

Now let's leave a=d=1 and experiment with b...

The matrix

$$\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$$

gives:

$$x' = x + by$$
$$y' = y$$

Effect on unit square

Let's see how a general 2×2 transformation M affects the unit square:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \mathbf{p} & \mathbf{q} & \mathbf{r} & \mathbf{s} \end{bmatrix} = \begin{bmatrix} \mathbf{p}' & \mathbf{q}' & \mathbf{r}' & \mathbf{s}' \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & a+b & b \\ 0 & c & c+d & d \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & a+b & b \\ 0 & c & c+d & d \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & a+b & b \\ 0 & c & c+d & d \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & a+b & b \\ 0 & c & c+d & d \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & a+b & b \\ 0 & c & c+d & d \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & a & a+b & b \\ 0 & c & c+d & d \end{bmatrix}$$

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} c & c \\ c & d \end{bmatrix} \begin{bmatrix} c & c \\ c & d \end{bmatrix} \begin{bmatrix} c & c \\ c & d \end{bmatrix}$$

14

Effect on unit square, cont.

Observe:

- Origin invariant under M
- M can be determined just by knowing how the corners (1,0) and (0,1) are mapped
- a and d give x- and y-scaling
- b and c give x- and y-shearing

Rotation

From our observations of the effect on the unit square, it should be easy to write down a matrix for "rotation about the origin":

15

Limitations of the 2 x 2 matrix

A 2 x 2 linear transformation matrix allows

- Scaling
- Rotation
- Reflection
- Shearing

Q: What important operation does that leave out?

Affine transformations

In order to incorporate the idea that both the basis and the origin can change, we augment the linear space **u**, **v** with an origin **t**.

We call u, v, and t (basis and origin) a frame for an affine space.

Then, we can represent a change of frame as:

This change of frame is also known as an affine transformation.

How do we write an affine transformation with matrices?

17

Homogeneous coordinates

Idea is to loft the problem up into 3-space, adding a third component to every point:

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

And then transform with a 3 x 3 matrix:

Rotation about arbitrary points

Until now, we have only considered rotation about the origin.

With homogeneous coordinates, you can specify a rotation, θ , about any point $\mathbf{q} = [\mathbf{q}_{\mathbf{x}} \ \mathbf{q}_{\mathbf{v}}]^T$ with a matrix:

- 1. Translate q to origin
- 2. Rotate
- 3. Translate back

Note: Transformation order is important!!

18

Points and vectors

Vectors have an additional coordinate of w=0. Thus, a change of origin has no effect on vectors.

Q: What happens if we multiply a vector by an affine

These representations reflect some of the rules of affine operations on points and vectors:

One useful combination of affine operations is:
$$Vector \ \alpha + \beta = 0$$

Basic 3-D transformations: scaling

Some of the 3-D transformations are just like the 2-D

For example, scaling:

22

Translation in 3D

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} t_x \\ t_y \\ t_z \\ 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Rotation in 3D

How many degrees of freedom are therein an arbitrary 3D rotation?

$$R_{\times}(\mathcal{L}) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Shearing in 3D

Shearing is also more complicated. Here is one example:

We call this a shear with respect to the x-z plane.

Properties of affine transformations

Here are some useful properties of affine transformations:

- + Lines map to lines
- Parallel lines remain parallel
- Midpoints map to midpoints (in fact, ratios are always preserved)

Affine transformations in OpenGL

OpenGL maintains a "modelview" matrix that holds the current transformation ${\bf M}_{\bullet}$

25

27

The modelview matrix is applied to points (usually vertices of polygons) before drawing.

It is modified by commands including:

• glTranslatef(
$$t_x$$
, t_y , t_z) $M \leftarrow MT$
- translate by (t_x, t_y, t_z)

Note that OpenGL adds transformations by postmultiplication of the modelview matrix.