Texture Mapping

Brian Curless
CSE 457
Spring 2014

Reading

Required
- Angel, 7.4-7.10

Recommended

Optional
- Woo, Neider, & Davis, Chapter 9

Implementing texture mapping

A texture lives in its own abstract image coordinates parameterized by \((s,t)\) in the range \([0..1],[0..1]):\n
![Texture mapping](image)

Texture mapping allows you to take a simple polygon and give it the appearance of something much more complex.
- Due to Ed Catmull, PhD thesis, 1974
- Refined by Blinn & Newell, 1976

A texture can modulate just about any parameter - diffuse color, specular color, specular exponent, ...

With a ray caster, we can do the sphere and cylinder mappings directly (as we will see later). For z-buffers, everything gets converted to a triangle mesh with associated \((s,t)\) coordinates.

Note: if the surface moves/deforms, the texture goes with it.
Mapping to texture image coords

The texture is usually stored as an image. Thus, we need to convert from abstract texture coordinate:

\((u, v)\) in the range \([0, 1] \times [0, 1]\)

to texture image coordinates:

\((s, t)_{\text{tex}}\) in the range \([0..w_{\text{tex}}], [0..h_{\text{tex}}]\)

Q: What do you do when the texture sample you need lands between texture pixels?

Texture resampling

We need to resample the texture:

Thus, we seek to solve for: \(T(a,b) = T(i+\Delta x, j+\Delta y)\)

A common choice is bilinear interpolation:

\[
T(i+\Delta x, j+\Delta y) = \left[\begin{array}{c}
-\Delta x \Delta y \\
\Delta x (\Delta y) \\
\Delta x \Delta y
\end{array}\right] T(i,j) + \frac{\Delta x}{\Delta x+\Delta y} T(i+1,j) + \frac{\Delta y}{\Delta x+\Delta y} T(i,j+1) + \frac{\Delta x \Delta y}{\Delta x+\Delta y} T(i+1,j+1)
\]

Texture mapping and the z-buffer

Texture-mapping can also be handled in z-buffer algorithms.

Method:

- Scan conversion is done in screen space, as usual
- Each pixel is colored according to the texture
- Texture coordinates are found by Gouraud-style interpolation

Note: Mapping is more complicated to handle perspective correctly!
Displacement mapping

Textures can be used for more than just color.

In **displacement mapping**, a texture is used to perturb the surface geometry itself. Here's the idea in 2D:

- These displacements "animate" with the surface
- In 3D, you would of course have (s,t) parameters instead of just s.

Suppose \(Q \) is a simple surface, like a cube. Will it take more work to render the modified surface \(\hat{Q} \)?

Bump mapping

In **bump mapping**, a texture is used to perturb the normal:

- Use the original, simpler geometry, \(Q(s) \), for hidden surfaces
- Use the normal from the displacement map for shading:

\[
\tilde{\mathbf{N}} = \text{normal}[\hat{Q}(s)]
\]

What artifacts in the images would reveal that bump mapping is a fake?

Silhouettes are not bumpy, cast shadows are not bumpy

Displacement vs. bump mapping

Input texture

Rendered as displacement map over a rectangular surface

Displacement vs. bump mapping (cont'd)

Original rendering Rendering with bump map wrapped around a cylinder

Bump map and rendering by Wyvern Aldinger
Solid textures

Q: What kinds of artifacts might you see from using a marble veneer instead of real marble?

One solution is to use **solid textures**:

- Use model-space coordinates to index into a 3D texture
- Like “carving” the object from the material

One difficulty of solid texturing is coming up with the textures.

Solid textures (cont’d)

Here’s an example for a vase cut from a solid marble texture:

![Solid marble texture by Ken Perlin, (Foley, IV-21)](image)

Environment mapping

In **environment mapping** (also known as **reflection mapping**), a texture is used to model an object’s environment:

- Rays are bounced off objects into environment
- Color of the environment used to determine color of the illumination
- Environment mapping works well when there is just a single object — or in conjunction with ray tracing

This can be readily implemented (without interreflection) using a fragment shader, where the texture is stored in a “cube map” instead of a sphere.

With a ray tracer, the concept is easily extended to handle refraction as well as reflection (and interreflection).
Summary

What to take home from this lecture:

1. The meaning of the boldfaced terms.
2. Familiarity with the various kinds of texture mapping, including their strengths and limitations.