Parametric surfaces

Brian Curless
CSE 457
Spring 2014

Reading

Required:
- Angel readings for “Parametric Curves” lecture, with emphasis on 10.1.2, 10.1.3, 10.1.5, 10.6.2, 10.7.3, 10.9.4.

Optional

Mathematical surface representations

- Explicit \(z = f(x, y) \) (a.k.a., a “height field”)
 - what if the curve isn’t a function, like a sphere?

- Implicit \(g(x, y, z) = 0 \)

\[
\begin{align*}
N \sim \nabla g &= \begin{pmatrix}
\frac{2x}{\sqrt{x^2 + y^2}} & \frac{2y}{\sqrt{x^2 + y^2}} & \frac{-2z}{\sqrt{x^2 + y^2}}
\end{pmatrix} \\
&= \begin{pmatrix}
x & y & -z
\end{pmatrix}
\end{align*}
\]

- Parameteric: \(S(u, v) = (x(u, v), y(u, v), z(u, v)) \)
 - For the sphere:
 \[
 \begin{align*}
 x(u, v) &= r \cos 2\pi v \sin \pi u \\
y(u, v) &= r \sin 2\pi v \sin \pi u \\
z(u, v) &= r \cos \pi u
 \end{align*}
 \]
As with curves, we’ll focus on parametric surfaces.

Surfaces of revolution

Given: A curve \(C(u) \) in the xy-plane:
\[
C(u) = \begin{bmatrix}
c_1(u) \\
c_2(u) \\
0
\end{bmatrix}
\]
Let \(R_y(\theta) \) be a rotation about the y-axis.

Find: A surface \(S(u, v) \) which is \(C(u) \) rotated about the y-axis, where \(u, v \in [0, 1] \).

Solution:
\[
S(u, v) = R_y(2\pi v)C(u)
\]
General sweep surfaces

The **surface of revolution** is a special case of a **swept surface**.

Idea: Trace out surface $S(u,v)$ by moving a **profile curve** $C(u)$ along a **trajectory curve** $T(v)$.

![Diagram of surface of revolution](image)

More specifically:
- Suppose that $C(u)$ lies in an (x,y,z) coordinate system with origin O_z.
- For every point along $T(v)$, lay $C(u)$ so that O_z coincides with $T(v)$.

Orientation

The big issue:

- How to orient $C(u)$ as it moves along $T(v)$?

Here are two options:

1. **Fixed** (or **static**): Just translate O_z along $T(v)$.

![Diagram of fixed orientation](image)

2. **Moving**. Use the **Frenet frame** of $T(v)$.

- Allows smoothly varying orientation.
- Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve $T(v)$, we want to attach a smoothly varying coordinate system.

![Diagram of Frenet frame](image)

To get a 3D coordinate system, we need 3 independent direction vectors.

- **Tangent**: $t(v) = \text{normalize}[T'(v)]$
- **Binormal**: $b(v) = \text{normalize}[T'(v) \times T''(v)]$
- **Normal**: $n(v) = b(v) \times t(v)$

As we move along $T(v)$, the Frenet frame (t,b,n) varies smoothly.

Frenet swept surfaces

Orient the profile curve $C(u)$ using the Frenet frame of the trajectory $T(v)$:

- Put $C(u)$ in the **normal plane**.
- Place O_z on $T(v)$.
- Align x_z for $C(u)$ with b.
- Align y_z for $C(u)$ with n.

![Diagram of Frenet swept surface](image)

If $T(v)$ is a circle, you get a surface of revolution exactly!
Degenerate frames

Let’s look back at where we computed the coordinate frames from curve derivatives:

Where might these frames be ambiguous or undetermined?

Variations

Several variations are possible:
- Scale $C(u)$ as it moves, possibly using length of $T(u)$ as a scale factor.
- Morph $C(u)$ into some other curve $\tilde{C}(u)$ as it moves along $T(u)$.
- ...

Tensor product Bézier surfaces

Given a grid of control points V_{ij} forming a control net, construct a surface $S(u,v)$ by:
- treating rows of V (the matrix consisting of the V_{ij}) as control points for curves $V_{i}(u), \ldots, V_{n}(u)$.
- treating $V_{0}(u), \ldots, V_{m}(u)$ as control points for a curve parameterized by v.

Tensor product Bézier surfaces, cont.

Let’s walk through the steps:
- Control net
- Control curves in u
- Control polygon at $u=1/2$
- Curve at $S(1/2, v)$

Which control points are interpolated by the surface?
Polynomial form of Bézier surfaces

Recall that cubic Bézier curves can be written in terms of the Bernstein polynomials:

\[Q(u) = \sum_{i=0}^{3} V_i b_i(u) \]

A tensor product Bézier surface can be written as:

\[S(u, v) = \sum_{i=0}^{3} \sum_{j=0}^{3} V_{ij} b_i(u) b_j(v) \]

In the previous slide, we constructed curves along \(u \), and then along \(v \). This corresponds to re-grouping the terms like so:

\[S(u, v) = \sum_{i=0}^{3} \left(\sum_{j=0}^{3} V_{ij} b_j(v) \right) b_i(u) \]

But, we could have constructed them along \(v \), then \(u \):

\[S(u, v) = \sum_{j=0}^{3} \left(\sum_{i=0}^{3} V_{ij} b_i(u) \right) b_j(v) \]

Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce \(C^1 \) continuity and local control, we get B-spline curves:

- treat rows of \(B \) as control points to generate Bézier control points in \(u \).
- treat Bézier control points in \(u \) as B-spline control points in \(v \).
- treat B-spline control points in \(v \) to generate Bézier control points in \(u \).

Tensor product B-spline surfaces, cont.

Another example:

Which B-spline control points are interpolated by the surface?
NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

Trimmed NURBS surfaces

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by trimming the u-v domain.

- Define a closed curve in the u-v domain (a trim curve)
- Do not draw the surface points inside of this curve.

It’s really hard to maintain continuity in these regions, especially while animating.

Summary

What to take home:

- How to construct swept surfaces from a profile and trajectory curve.
 - with a fixed frame
 - with a Frenet frame
- How to construct tensor product Bézier surfaces
- How to construct tensor product B-spline surfaces