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Homework #2 

 

Shading, Projections, Texture Mapping,  

Ray Tracing, and Bezier Curves 

 

 

 

 

 

 

Assigned:  Monday, May 12
th

  

 

Due:   Thursday, May 22
nd

  

                 at the beginning of class 

 

 

 

 

 

 

Directions: Please provide short written answers to the following questions on your own paper.  

Feel free to discuss the problems with classmates, but please answer the questions on your own 

and show your work. 

 

 

Please write your name on your assignment! 
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Problem 1. Blinn-Phong shading (16 Points) 

 
The Blinn-Phong shading model for a scene illuminated by global ambient light and a single directional 

light can be summarized by the following equation: 

 

Iphong = ke + kaIa + kd B IL (N·L) + ks B IL (N·H)+
ns 

 
Imagine a scene with one white sphere illuminated by white global ambient light and a single white 

directional light.  For sub-problems a) – f), describe – qualitatively, in words – the effect of each step on 

the shading of the object.  At each incremental step, assume that all the preceding steps have been applied 

first.  Assume that the directional light is oriented so that the viewer can see the shading over the surface, 

including diffuse and specular where appropriate. 

 

a) (2 points) The directional light is off.  How does the shading vary over the surface of the object? 

 

b) 2 points) Now turn the directional light on.  The specular reflection coefficient ks of the material is 

zero, and the diffuse reflection coefficient kd is non-zero.  How does the shading vary over the 

surface of the object? 

 

c) (2 points) Now translate the sphere straight toward the viewer.  What happens to the shading over 

the object? 

 

d) (2 points) Now increase the specular exponent ns.  What happens? 

 

e) (2 points) Now increase the specular reflection coefficient ks of the material to be greater than 

zero.  What happens? 

 

f) (2 points) Now decrease the specular exponent ns.  What happens? 

 

g) (2 points) Suppose we assume that the viewing direction V is constant regardless of which pixel it 

passes through.  What does this imply about the viewer? 

 

h) (2 points) Assuming that L and V are constant everywhere, then with a little pre-computation, it is 

possible to shade faster (i.e., using fewer operations) using the Blinn-Phong model above, than it 

is to shade using the Phong model, which bases the specular component on (V·R)+
ns.  Why would 

Blinn-Phong be faster than Phong in this situation?  Explain. 
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Problem 2.  Environment mapping (20 points) 
 

One method of environment mapping (reflection mapping) involves using a “gazing ball” to capture an image of 

the surroundings. The idea is to place a chrome sphere in a real environment, take a photograph of the sphere, and 

use the resulting image as an environment map.  Each pixel that “sees” a point on the chrome sphere maps to a ray 

with direction determined by the reflection through the chrome sphere; the pixel records the color of a point in the 

surroundings along that reflected direction.  You can turn this around and construct a lookup table that maps each 

reflection direction to a color.  This table is the environment map, sometimes called a reflection map. 

 

Let’s examine this in two dimensions, using a “gazing circle” to capture the environment around a point.   Below 

is a diagram of the setup. In order to keep the intersection and angle calculations simple, we will assume that each 

viewing ray V that is cast through the projection plane to the gazing circle is parallel to the z-axis. The circle is of 

radius 1, centered at the origin. 

 
a) (5 points) If the x-coordinate of the view ray is xv, what are the (x,z) coordinates of the point at which the 

ray intersects the circle? What is the unit normal vector at this point? 

 

b) (3 points) What is the angle between the view ray V and the normal N as a function of xv? 

 

c) (5 points) Note that the angle φ between the view ray V and the reflection direction R is equal to 2θ, 

where θ is the angle between V and the normal N.  Plot φ versus xv. In what regions of the image do small 

changes in the xv coordinate result in large changes in the reflection direction? 

 

d) (4 points) We can now treat the photograph of the chrome circle as an environment map (for a 2D world).  

When ray tracing a new chrome object, we compute the mirror reflection direction when a ray intersects 

the object, and then just look up the color from the environment map.  (If the computed reflection 

direction lands between directions stored in the environment map, then you can use bilinear interpolation 

to get the desired color.)  Would we expect to get exactly the same rendering as if we had placed the 

object into the original environment we photographed?  Why or why not?  In answering the question, you 

can neglect viewing rays that do not hit the object, assume that the new object is not itself a chrome circle, 

and assume that the original environment is some finite distance from the chrome circle that was 

originally photographed. 

 

e) (3 points) Suppose you lightly sanded the chrome circle before photographing it, so that the surface was 

just a little rough.   

 

• What would the photograph of the circle look like now, compared to how it looked before roughening 

its surface?   

• If you used this image as an environment map around an object, what kind of material would the 

object seem to made of? 

• If you did not want to actually roughen the object, what kind of image filter might you apply to the 

image of the original chrome circle to approximate this effect? 



 4

Problem 3: Projections  (16 points) 
 
Shown below on the left are two parallel projections of a cube, a perspective projection (image) plane, 

and a center of projection (COP).  The “side view” is the parallel projection looking down the -x direction 

and the “top view” is the parallel projection looking down the -y direction.  On the far right is a 

visualization of just the cube, with projections onto the x-z and y-z planes shown as gray quadrilaterals.  

As can be determined from the drawings, the corner of the cube closest to the origin is at (2, 2,-2), the 

cube has side length of 2, and the projection plane is at z = -2. 

 

                 
 

For the questions below, you will start by considering the perspective projection that arises from the 

geometry illustrated in the figure. 

 

As part of this problem, you will be asked about the vanishing points of the cube.  In particular, each line 

segment of the cube lies on a line that has a vanishing point. We will refer to this as one of the vanishing 

points of the cube.  However, some vanishing points may be at infinity; we will not consider or count 

vanishing points at infinity in this problem. 

 

(a) (4 points) Form the projection matrix and compute the (x ,y) coordinates of the eight corners of the 

cube after projection. 

 

(b) (4 points) Sketch the cube as it would be seen in the perspective projection given the center of 

projection and projection plane.  Place marks at unit spacing on the axes (analogous to what has been 

done in the figure) so that the locations of the cube corners can be read from the drawing.  Draw 

hidden lines as dashed, and identify any vanishing points (labeled “VP” on your drawing).   

 

(c) (2 points) What happens to the vanishing point(s) as we translate the cube in the –y direction?  

Explain your reasoning. 

 

(d) (3 points) If you can freely rotate and translate the cube, what are the minimum and maximum 

number of vanishing points you will see in its projection?  Explain your reasoning. 

 

(e) (3 points) In general, if we rotate and translate the projection plane without moving the center of 

projection and without moving the object, how do the occlusion relationships change?  That is, do 

surfaces that were occluded in one image become unoccluded in another and/or vice versa?  Explain 

your reasoning. 



 5

Problem 4.  Ray intersection with implicit surfaces (23 points) 

 

There are many ways to represent a surface.  One way is to define a function of the form 0),,( =zyxf .  Such a 

function is called an implicit surface representation.  For example, the equation 

0),,( 2222
=−++= rzyxzyxf  defines a sphere of radius r.  Suppose we wanted to ray trace a “quartic 

chair,” described by the equation: 

 
2 2 2 2 2 2 2 2 2( ) ( ) 2 ( ) 2 0x y z ak b z k x z k y   + + − − − − + − =     

 

On the left is a picture of a quartic chair, and on the right is a slice through the y-z plane. 

 

                  

z

y

z

y

 
 

For this problem, we will assume a = 0.95, b = 0.8, and k = 5. 

 

In the next problem steps, you will be asked to solve for and/or discuss ray intersections with this primitive.  

Performing the ray intersections will amount to solving for the roots of a polynomial, much as it did for 

sphere intersection.  For your answers, you need to keep a few things in mind: 

 

• You will find as many roots as the order (largest exponent) of the polynomial. 

 

• You may find a mixture of real and complex roots.  When we say complex here, we mean a number that 

has a non-zero imaginary component. 

 

• All complex roots occur in complex conjugate pairs.  If A + iB is a root, then so is A – iB. 

 

• Sometimes a real root will appear more than once, i.e., has multiplicity > 1.  Consider the case of sphere 

intersection, which we solve by computing the roots of a quadratic equation. A ray that intersects the 

sphere will usually have two distinct roots (each has multiplicity = 1) where the ray enters and leaves the 

sphere.  If we were to take such a ray and translate it away from the center of the sphere, those roots get 

closer and closer together, until they merge into one root.  They merge when the ray is tangent to the 

sphere.  The result is one distinct real root with multiplicity = 2. 

 

a) (8 points) Consider the ray dtP + , where ( )000=P  and ( )0 0 1=d .  Solve for all values of t 

where the ray intersects the quartic chair (including negative values of t).  Which value of t represents the 

intersection we care about for ray tracing?  In the process of solving for t, you will be computing the roots 

of a polynomial.  How many distinct real roots do you find?  How many of them have multiplicity > 1?  

How many complex roots do you find? 
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Problem 4 (cont’d)   

 

b) (15 points) What are all the possible combinations of roots, not counting the one in part (a)?  For each 

combination, describe the 4 roots as in part (a), draw a ray in the y-z plane that gives rise to that 

combination, and place a dot at each intersection point. There are five diagrams below that have not been 

filled in.  You may not need all five; on the other hand, if you can actually think of more distinct cases than 

spaces provided, then we might just give extra credit.  The first one has already been filled in.  (Note: not 

all conceivable combinations can be achieved on this particular implicit surface.  For example, there is no 

ray that will give a root with multiplicity 4.)  Please write on this page and include it with your 

homework solution. You do not need to justify your answers.   
 

 

 

              
 

   # of distinct real roots:  4                   # of distinct real roots:            # of distinct real roots: 

 

   # of real roots w/ multiplicity > 1:  0         # of real roots w/ multiplicity > 1:          # of real roots w/ multiplicity > 1: 

 

   # of complex roots:   0            # of complex roots:            # of complex roots: 

 

 

 

 

 

              
  

   # of distinct real roots:                     # of distinct real roots:            # of distinct real roots: 

 

   # of real roots w/ multiplicity > 1:           # of real roots w/ multiplicity > 1:          # of real roots w/ multiplicity > 1: 

 

   # of complex roots:             # of complex roots:            # of complex roots: 
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Problem 5. Bezier splines (25 points) 
 

Consider a Bezier curve segment defined by three control points V0, V1, and V2.  

 

a) (3 points) What is the polynomial form of this curve, when written out in the form 

Q(u) = An u
n
 + An-1 u

n-1
 + … + A0, where n is determined by the number of control points.  The 

coefficients A0, …, An should be substituted in the polynomial equation with expressions that depend on 

the control points V0, V1, and V2.  You may start with recursive subdivision or with the summation over 

Bernstein polynomials provided in lecture.  Either way, show your work. 

 

b) (3 points) What is the first derivative of Q(u) evaluated at u = 0 and at u = 1 (i.e., what are Q’(0) and 

Q’(1))?  Show your work. 

 

c) (3 points) What is the second derivative of Q(u) evaluated at u = 0 and at u = 1 (i.e., what are Q’’(0) and 

Q’’(1))?  Show your work. 

 

d) (5 points) To create a spline curve, we can stitch together consecutive Bezier curves.  In this problem, we 

can add control points W0, W1, and W2.  What constraints must be placed on W0, W1, and/or W2 so that, 

when combined with V0, V1, and V2, the resulting spline curve is C
1
 continuous at the joint between the 

Bezier segments?  Write out equations for W0, W1, and/or W2 in terms of V0, V1, and/or V2.  (It may be 

that not all of the W control points are constrained, in which case you would have fewer than three 

equations.)  Show your work.  Draw a copy of the control polygon below (shown at the bottom of the 

page) and place all constrained vertices exactly, and unconstrained vertices wherever you like, and then 

sketch the spline curve. 

 

e) (5 points) Suppose we wanted to make the spline curve C
2
 continuous at the joint between the Bezier 

segments.  Now what constraints must be placed on W0, W1, and W2?  Write out equations for W0, W1, 

and/or W2 in terms of V0, V1, and/or V2.  (It may be that not all of the W control points are constrained, in 

which case you would have fewer than three equations.)  Show your work. Draw a copy of the control 

polygon below (shown at the bottom of the page) and place all constrained vertices exactly, and 

unconstrained vertices wherever you like, and then sketch the spline curve. 

 

f) (3 points) Is it possible to achieve C
3
 continuity with this spline?  Explain. 

 

g) (3 points) Suppose that all the control points are points in three dimensions, so that we can create a spline 

curve in 3-space.  Given a single quadratic Bezier segment, the entire Bezier curve for that segment will 

always lie in a plane.  Why?  (Note that for a spline curve, each and every quadratic Bezier curve segment 

lies in a plane, but not necessarily the same planes as each other.)  Given a single cubic Bezier segment, 

will the entire Bezier curve for that segment generally lie in a plane?  Explain. 
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