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Computer Graphics  Instructor: Brian Curless
CSE 457 Spring 2013
 
 
 
 
 
 
 
 
 
 

Homework #2 
 

Hidden Surfaces, Projections, Shading and Texture,  
Ray Tracing, and Parametric Curves 

 
 
 
 

 
Assigned: Sunday, May 12th  

 
Due:   Thursday, May 23th  

                 at the beginning of class 
 
 
 

 
 
 

Directions: Please provide short written answers to the following questions, using this page as a 
cover sheet.  Be sure to justify your answers when requested.  Feel free to discuss the problems with 
classmates, but please answer the questions on your own. 

 
 

Be sure to write your name on your homework solution.   
You may (optionally) use this page as a cover sheet. 

 

 
 



 2

Problem 1.  Z-buffer (10 points) 
 

The z-buffer algorithm can be improved by using an image space “z-pyramid.”  The basic idea of the z-pyramid 
is to use the original z-buffer as the finest level in the pyramid, and then combine four z-values at each level into 
one z-value at the next coarser level by choosing the farthest (most negative) z from the observer.  Every entry 
in the pyramid therefore represents the farthest (most negative) z for a square area of the z-buffer.  In this 
problem, assume the image is always square with side length that is a power of 2.  (Handling non-square, non-
powers-of-2 images is a simple generalization of this.)  Before each primitive is rendered, the z-pyramid is 
updated to reflect the current state of the z-buffer.  When you have a new primitive to draw, you are then testing 
against the current, up-to-date z-pyramid.  A z-pyramid for a single 2x2 image is shown below: 
 
 

 
a) (2 points) At the coarsest level of the z-pyramid 

there is just a single z value.  What does that z 
value represent? 

 
 
 
 
 
Suppose we wish to test the visibility of a triangle T.  Let zT be the nearest z value of triangle T.  R is a region 
on the screen that encloses the triangle T, and is the smallest region of the z-pyramid that does so.  Let zR be 
the z value that is associated with region R in the z-pyramid. 
 
 

 
b) (2 points) What can we conclude if zR < zT? 
 
c) (2 points) What can we conclude if zT < zR? 

 
 
 
 
 
 

If the visibility test is inconclusive, then the algorithm applies the same test recursively: it goes to the next 
finer level of the pyramid, where the region R is divided into four quadrants, and attempts to prove that 
triangle T is hidden in each of the quadrants of R that T intersects.  Since it is expensive to compute the closest 
z value of T within each quadrant, the algorithm just uses the same zT (the nearest z of the entire triangle) in 
making the comparison in every quadrant.  If, at the bottom of the pyramid, the test is still inconclusive, the 
algorithm resorts to ordinary z-buffered rasterization to resolve visibility. 
 

d) (4 points) Suppose that, instead of using the above algorithm, we decided to go to the expense of 
computing the closest z value of T within each quadrant.  Finding the closest value amounts to 
clipping the triangle to each region and analytically solving for the closest z.  This approach also 
applies to the finest level of the pyramid, where the pixels are abutting square regions.   Would it then 
be possible to always make a definitive conclusion about the visibility of T within each pixel, without 
resorting to rasterization (effectively intersecting the viewing ray with the triangle)?  Why or why not? 

-
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Problem 2. Projections (15 points) 
 
Imagine there is a pinhole camera located at the origin, COP1, that is looking in the –z direction.  The projection 

plane (PP) is the plane z = zP (note zP is a negative number), so that the distance from COP1 to PP is d = -zP, as 
shown in the figure below.  Let there be two points in the scene, P = [0 yP zP 1]T and Q = [0 yP 2zP 1]T. 
 

 
 
The projection matrix for this camera is 
 

1 0 0 0

0 1 0 0

0 0 1/ 0pz

 
 
 
  

 

 
This projects P to the point [0 yP 1]T and Q to the point [0 ½yP 1]T. 
 

a) (4 points) Now, assume that the camera has moved to COP2 (shown above) at [0 0 -2zP 1]T.  Assume 
PP stays at z = zP.  Derive the new projection matrix that maps points onto PP.  Show your work. 

 
b) (2 points) If your matrix in part a) is correct, point P should project to the same image point as before.  

Calculate the projection of point Q.  How did the projection of point Q change when the camera 
moved from COP1 to COP2?   

 
c) (6 points) Suppose we want to keep the projection of Q constant at [0 ½yP 1]T.  Suppose the center of 

projection is at COP = [0 0 zCOP 1]T.  To keep the projection of Q constant, we will need to vary the z-
coordinate of PP; let the updated PP be z = pz .  Solve for pz needed to keep Q’s projection constant as 

zCOP varies.  Show your work.  Note that the z-coordinate of Q is fixed at 2zP, but the z-coordinate of PP is 
now a variable, pz . 

 
d) (3 points) Now consider moving the COP infinitely far back along the positive z-axis while keeping PP at 

its original location, z = zP.  Derive the new projection matrix for this case.  Show your work.  What is this 
sort of projection called? 

 

zP 

zP

yP 

P

Q 



 4

Problem 3.  Shading, displacement mapping, and normal mapping (30 points) 
 

In this problem, an opaque surface will be illuminated by one directional light source and will reflect light 
according to the following Phong shading equation: 
 

     
   shadow d s

sn
I A L k k BN L V R  

 
Note the inclusion of a shadowing term, which takes on a value of 0 or 1.  For simplicity, we will assume a 

monochrome world where I, L, kd, and ks are scalar values. 
 
Suppose a viewer is looking down at an infinite plane (the x-y plane) as illustrated below.  The scene is 
illuminated by a directional light source, also pointing straight down on the scene. 
 

 
 
Answer the following questions below, giving brief justifications of each answer.  Note that lighting and 
viewing directions are from the point of view of the light and viewer, respectively, and need to be negated 
when considering the surface-centric shading equation above.  [In general, you don't need to solve equations 
and precisely plot functions.  It is enough to describe the variables involved, how they relate to each other, and 
how this relationship will determine, e.g., the appearance of the surface.  If you're more comfortable making 
the answers analytical with equations and plots, however, you are welcome to do so.] 

 
a) (2 points) Assume: Perspective viewer at (0,0,1) looking in the (0,0,-1) direction, angular field of view of 

90 degrees, lighting direction of (0,0,-1), kd = 0.5, ks = 0.  Describe the brightness variation over the image 
seen by the viewer.  Justify your answer. 

 
b) (2 points) Assume: Perspective viewer at (0,0,1) looking in the (0,0,-1) direction, , angular field of view of 

90 degrees, lighting direction of (0,0,-1), kd = 0.5, ks = 0.5, ns = 10. Describe the brightness variation over 
the image seen by the viewer.  Justify your answer. 

 

c) (2 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, lighting direction of (0,0,-1), kd = 

0.5, ks = 0.5, ns = 10.  Describe the brightness variation over the image seen by the viewer.  Justify your 
answer. 

 

d) (3 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, kd = 0.5, ks = 0.  The lighting 
direction starts at (-sqrt(2)/2 ,0, -sqrt(2)/2) and then rotates around the z-axis.  Describe the brightness 
variation over time, as seen by the viewer. Justify your answer. 
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Problem 3. (cont’d) 
 

e) (3 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, kd = 0.5, ks = 0.5, ns = 10. The 
lighting direction starts at (-sqrt(2)/2 ,0, -sqrt(2)/2) and then rotates around the z-axis.  Describe the 
brightness variation over time, as seen by the viewer. Justify your answer. 

 
 
Suppose now the infinite plane is replaced with a surface z = cos(x): 
 

 
 
We can think of this as simply adding a displacement d=cos(x) in the normal direction to the x-y plane.   

 

f) (5 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, lighting direction of (0,0,-1), kd = 

0.5, ks = 0.  At what values of x is the surface brightest?  At what values is it dimmest?  Describe the 
appearance of the surface.  Justify your answers. 
 

g) (5 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, lighting direction of (0,0,-1), kd 

=0, ks =0.5, ns =10.  At what values of x is the surface brightest?  Describe the appearance of the surface.  

How does the appearance change as ns increases to 100?  Justify your answers. 
 

 
Suppose now that we simply keep the normals used in (f)-(g) and map them over the plane from the first part 
of the problem.  The geometry will be flat, but the shading will be based on the varying normals.  

 

h) (5 points) Assume: Orthographic viewer looking in the (0,0,-1) direction, kd =0.5, ks =0.  If we define the 
lighting to have direction (-sin, 0, -cos), will the normal mapped rendering look the same as the 
displacement mapped rendering for each of = 0, 10, and 80 degrees?  Justify your answer. 
 

i) (3 points) Assume: Orthographic viewer, lighting direction of (0,0,-1), kd =0.5, ks =0.  As we generally 
move the viewer around – rotating it to various viewing direcitons – will the normal mapped rendering 
look the same as the displacement mapped rendering?  Justify your answer. 
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Problem 4.  Ray intersection with implicit surfaces (24 points)  
 
There are many ways to represent a surface.  One way is to define a function of the form 0),,( zyxf .  Such 
a function is called an implicit surface representation.  For example, the equation 

0),,( 2222  rzyxzyxf  defines a sphere of radius r.  Suppose we wanted to ray trace a so-called 
“tangle cube,” described by the equation: 
 

4 4 4 2 2 25 5 5 12 0x y z x y z        
 

In the figure below, the left column shows two renderings of the tangle cube, the middle column illustrates 
taking a slice through the x-y plane (at z = 0), and the right column shows a slice parallel to the x-y plane taken 
toward the bottom of the tangle cube (plane at z ≈ -1.5): 
 

 
 

In the next problem steps, you will be asked to solve for and/or discuss ray intersections with this primitive.  
Performing the ray intersections will amount to solving for the roots of a polynomial, much as it did for sphere 
intersection.  For your answers, you need to keep a few things in mind: 

 
 You will find as many roots as the order (largest exponent) of the polynomial. 
 You may find a mixture of real and complex roots.  When we say complex here, we mean a number that has a 

non-zero imaginary component. 
 All complex roots occur in complex conjugate pairs.  If A + iB is a root, then so is A – iB. 
 Sometimes a real root will appear more than once, i.e., has multiplicity > 1.  Consider the case of sphere 

intersection, which we solve by computing the roots of a quadratic equation. A ray that intersects the sphere 
will usually have two distinct roots (each has multiplicity = 1) where the ray enters and leaves the sphere.  If 
we were to take such a ray and translate it away from the center of the sphere, those roots get closer and closer 
together, until they merge into one root.  They merge when the ray is tangent to the sphere.  The result is one 
distinct real root with multiplicity = 2. 

 

(a) (9 points) Consider the ray dtP  , where  000P  and  1 1 0d .  Typically, we normalize d, 

but for simplicity (and without loss of generality) you can work with the un-normalized d as given here.   
 Solve for all values of t where the ray intersects the tangle cube (including any negative values of t).  

Show your work.   
 In the process of solving for t, you should have computed the roots of a polynomial.  How many distinct 

real roots did you find?  How many of them have multiplicity > 1?  How many complex roots did you find? 
 Which value of t represents the intersection we care about for ray tracing?   
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Problem 4 (cont’d)   
 
b) (15 points) What are all the possible combinations of roots when ray tracing this surface, not counting the one in 

part (a)?  For each combination, describe the 4 roots as in part (a), draw a ray in the x-y plane that gives rise to 
that combination, and place a dot at each intersection point. Assume the origin of the ray is outside of the 
bounding box of the object.  There are five diagrams below that have not been filled in.  You may not need all 
five; on the other hand, if you can actually think of more distinct cases than spaces provided, then we might just 
give extra credit.  The first one has already been filled in.  (Note: not all conceivable combinations can be 
achieved on this particular implicit surface.  For example, there is no ray that will give a root with multiplicity 
4.)  Please write on this page and include it with your homework solution. You do not need to justify your 
answers.   

 
 

                                           
 

# of distinct real roots:  4          # of distinct real roots:    # of distinct real roots: 
 

# of real roots w/ multiplicity > 1: 0 # of real roots w/ multiplicity > 1: # of roots w/ multiplicity > 1: 
 

# of complex roots: 0   # of complex roots:    # of complex roots: 
 
 
              

                    
                                       
 
# of distinct real roots:            # of distinct real roots:    # of distinct real roots: 
 
# of real roots w/ multiplicity > 1: # of real roots w/ multiplicity > 1: # of real roots w/ multiplicity > 1: 
 
# of complex roots:   # of complex roots:    # of complex roots: 
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Problem 5.  Parametric curves (21 points) 
 

In this problem, we will explore the construction of parametric.  Please write on the pages for this problem and 
include them with your homework solution. 
 
a) (3 points) Given the following Bezier control points, construct all of the de Casteljau lines and points needed to 

evaluate the curve at u=1/4. Label this point Q(1/4). 
 

 
 

b) (6 points) For the same Bezier control points, shown again below, construct all of the de Casteljau lines and points 
needed to evaluate the curve at u=1/2. Label this point Q(1/2).Then add the point from part (a) and label it Q(1/4).  
Now sketch the path the Bezier curve will take.  The curve does not need to be exact, but it should conform to 
some of the geometric properties of Bezier curves (convex hull condition, tangency at endpoints). 
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Problem 5 (cont’d) 
 
c) (6 points) Given the following Catmull-Rom control points, construct all of the lines and points needed to generate 

the Bezier control points for the Catmull-Rom curve.  Use a tension value of  =1. Assume that we insert 
“phantom” control points C-1=C0 and C4=C3, so that the spline is endpoint interpolating.  You must mark each 
Bezier point (including any that coincide with a Catmull-Rom control point) with an X, but you do not need to 
label it (i.e., no need to give each Bezier point a name).  Sketch the resulting spline curve, respecting the properties 
of Bezier curves noted above. 

 

 
 

d) (6 points) Given the following de Boor points, construct all of the lines and points needed to generate the Bezier 
control points for the B-spline.  Assume that we insert “phantom” control points B-2=B-1=B0 and B5=B4=B3, so that 
the spline is endpoint interpolating.  You must mark each Bezier point (including any that coincide with a de Boor 
point) with an X, but you do not need to label it (i.e., no need to give each Bezier point a name).  Sketch the 
resulting spline curve, respecting the properties of Bezier curves noted above. 
 

 


