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Reading

Required:

 Shirley, section 10.11

Further reading:

 Watt, sections 10.4-10.5 

 A. Glassner.  An Introduction to Ray Tracing.  
Academic Press, 1989. [In the lab.]

 Robert L. Cook, Thomas Porter, Loren Carpenter.
“Distributed Ray Tracing.” Computer Graphics 
(Proceedings of SIGGRAPH 84). 18 (3). pp. 137-145. 
1984.

 James T. Kajiya. “The Rendering Equation.”
Computer Graphics (Proceedings of SIGGRAPH 86). 
20 (4). pp. 143-150. 1986.
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Pixel anti-aliasing

No anti-aliasing

Pixel anti-aliasing

All of this assumes that inter-reflection behaves in a 
mirror-like fashion…
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BRDF, revisited
Recall that we could view light reflection in terms of 
the general Bi-directional Reflectance Distribution 
Function (BRDF):

BRDF’s exhibit reciprocity:

That means we can take two equivalent views of 
reflection.  Suppose in = L and out = V:

We can now think of the BRDF as weighting light 
coming in from all directions, which can be added up:

Or, written more generally:
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Simulating gloss and translucency

The mirror-like form of reflection, when used to 
approximate glossy surfaces, introduces a kind of 
aliasing, because we are under-sampling reflection 
(and refraction).

For example:

Distributing rays over reflection directions gives:
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Reflection anti-aliasing

Reflection anti-aliasing
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Pixel and reflection anti-aliasing

Pixel and reflection anti-aliasing
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Full anti-aliasing

Full anti-aliasing…lots of nested integrals!

Computing these integrals is prohibitively 
expensive, especially after following the rays 
recursively.

We’ll look at ways to approximate high-
dimensional integrals…
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Let’s return to the glossy reflection model, and 
modify it – for purposes of illustration – as follows:

We can visualize the span of rays we want to 
integrate over, within a pixel:

Glossy reflection revisited
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Returning to the reflection example, Whitted ray 
tracing replaces the glossy reflection with mirror 
reflection:

Thus, we render with anti-aliasing as follows:

Whitted ray tracing
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Let’ return to our original (simplified) glossy reflection 
model:

An alternative way to follow rays is by making 
random decisions along the way – a.k.a., Monte Carlo 
path tracing.  If we distribute rays uniformly over 
pixels and reflection directions, we get:

Monte Carlo path tracing
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The problem is that lots of samples are “wasted.”
Using again our glossy reflection model:

Let’s now randomly choose rays, but according to a 
probability that favors more important reflection 
directions, i.e., use importance sampling:

Importance sampling



13

We still have a problem that rays may be clumped 
together.  We can improve on this by splitting 
reflection into zones:

Now let’s restrict our randomness to within these 
zones, i.e. use stratified sampling:

Stratified sampling
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Stratified sampling of a 2D pixel

Here we see pure uniform vs. stratified sampling over 
a 2D pixel  (here 16 rays/pixel):

The stratified pattern on the right is also sometimes 
called a jittered sampling pattern.

One interesting side effect of these stochastic 
sampling patterns is that they actually injects noise 
into the solution (slightly grainier images).  This noise 
tends to be less objectionable than aliasing artifacts.

Random Stratified
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Distribution ray tracing

These ideas can be combined to give a particular 
method called distribution ray tracing [Cook84]:

 uses non-uniform (jittered) samples.

 replaces aliasing artifacts with noise.

 provides additional effects by distributing rays 
to sample:

• Reflections and refractions

• Light source area

• Camera lens area 

• Time

[This approach was originally called “distributed ray 
tracing,” but we will call it distribution ray tracing (as 
in probability distributions) so as not to confuse it 
with a parallel computing approach.] 
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DRT pseudocode

TraceImage() looks basically the same, except now 
each pixel records the average color of jittered sub-
pixel rays.

function traceImage (scene):

for each pixel (i, j) in image do

I(i, j)  0

for each sub-pixel id in (i,j) do

s  pixelToWorld(jitter(i, j, id))

p  COP

d (s - p).normalize()

I(i, j)  I(i, j) + traceRay(scene, p, d, id)

end for

I(i, j)  I(i, j)/numSubPixels

end for

end function

A typical choice is numSubPixels = 5*5.
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DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only) 
opaque glossy surfaces:

function traceRay(scene, p, d, id):

(q, N, material)   intersect (scene, p, d)

I  shade(…)

R  jitteredReflectDirection(N, -d, material, id)

I  I + material.kr  traceRay(scene, q, R, id)

return I

end function
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Pre-sampling glossy reflections
(Quasi-Monte Carlo)
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Distributing rays over light source area gives:

Soft shadows
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The pinhole camera, revisited

Recall the pinhole camera:

We can equivalently turn this around by following 
rays from the viewer:
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The pinhole camera, revisited

Given this flipped version:

how can we simulate a pinhole camera more 
accurately?
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Pinhole cameras in the real world require small apertures 
to keep the image in focus.  

Lenses focus a bundle of rays to one point => can have 
larger aperture.

For a “thin” lens, we can approximately calculate where an 
object point will be in focus using the the Gaussian lens 
formula:

where f is the focal length of the lens.

Lenses

1 1 1
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Depth of field

Lenses do have some limitations.  The most noticeable is 
the fact that points that are not in the object plane will 
appear out of focus.  

The depth of field is a measure of how far from the object 
plane points can be before appearing “too blurry.”

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm 24

Simulating depth of field
Consider how rays flow between the image plane and 
the in-focus plane:

We can model this as simply placing our image plane 
at the in-focus location, in front of the finite aperture, 
and then distributing rays over the aperture (instead 
of the ideal center of projection):
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Simulating depth of field, cont’d
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In general, you can trace rays through a scene and 
keep track of their id’s to handle all of these effects:

Chaining the ray id’s
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DRT to simulate _________________

Distributing rays over time gives:

28

Summary

What to take home from this lecture:

1. The limitations of Whitted ray tracing.

2. How distribution ray tracing works and what 
effects it can simulate.


