
1

Distribution Ray Tracing

Brian Curless
CSE 457

Spring 2011

2

Reading

Required:

 Shirley, section 10.11

Further reading:

 Watt, sections 10.4-10.5

 A. Glassner. An Introduction to Ray Tracing.
Academic Press, 1989. [In the lab.]

 Robert L. Cook, Thomas Porter, Loren Carpenter.
“Distributed Ray Tracing.” Computer Graphics
(Proceedings of SIGGRAPH 84). 18 (3). pp. 137-145.
1984.

 James T. Kajiya. “The Rendering Equation.”
Computer Graphics (Proceedings of SIGGRAPH 86).
20 (4). pp. 143-150. 1986.

3

Pixel anti-aliasing

No anti-aliasing

Pixel anti-aliasing

All of this assumes that inter-reflection behaves in a
mirror-like fashion…

4

BRDF, revisited
Recall that we could view light reflection in terms of
the general Bi-directional Reflectance Distribution
Function (BRDF):

BRDF’s exhibit reciprocity:

That means we can take two equivalent views of
reflection. Suppose in = L and out = V:

We can now think of the BRDF as weighting light
coming in from all directions, which can be added up:

Or, written more generally:

L

()outinrf  

()rf  VL

V

()rf  LV

 () () ()
H

rI I f d  VV L L L N L

 () () ()
H

out outin in in inrI I f d       N

(())out outin inr rf f    

5

Simulating gloss and translucency

The mirror-like form of reflection, when used to
approximate glossy surfaces, introduces a kind of
aliasing, because we are under-sampling reflection
(and refraction).

For example:

Distributing rays over reflection directions gives:

6

Reflection anti-aliasing

Reflection anti-aliasing

7

Pixel and reflection anti-aliasing

Pixel and reflection anti-aliasing

8

Full anti-aliasing

Full anti-aliasing…lots of nested integrals!

Computing these integrals is prohibitively
expensive, especially after following the rays
recursively.

We’ll look at ways to approximate high-
dimensional integrals…

9

Let’s return to the glossy reflection model, and
modify it – for purposes of illustration – as follows:

We can visualize the span of rays we want to
integrate over, within a pixel:

Glossy reflection revisited

10

Returning to the reflection example, Whitted ray
tracing replaces the glossy reflection with mirror
reflection:

Thus, we render with anti-aliasing as follows:

Whitted ray tracing

11

Let’ return to our original (simplified) glossy reflection
model:

An alternative way to follow rays is by making
random decisions along the way – a.k.a., Monte Carlo
path tracing. If we distribute rays uniformly over
pixels and reflection directions, we get:

Monte Carlo path tracing

12

The problem is that lots of samples are “wasted.”
Using again our glossy reflection model:

Let’s now randomly choose rays, but according to a
probability that favors more important reflection
directions, i.e., use importance sampling:

Importance sampling

13

We still have a problem that rays may be clumped
together. We can improve on this by splitting
reflection into zones:

Now let’s restrict our randomness to within these
zones, i.e. use stratified sampling:

Stratified sampling

14

Stratified sampling of a 2D pixel

Here we see pure uniform vs. stratified sampling over
a 2D pixel (here 16 rays/pixel):

The stratified pattern on the right is also sometimes
called a jittered sampling pattern.

One interesting side effect of these stochastic
sampling patterns is that they actually injects noise
into the solution (slightly grainier images). This noise
tends to be less objectionable than aliasing artifacts.

Random Stratified

15

Distribution ray tracing

These ideas can be combined to give a particular
method called distribution ray tracing [Cook84]:

 uses non-uniform (jittered) samples.

 replaces aliasing artifacts with noise.

 provides additional effects by distributing rays
to sample:

• Reflections and refractions

• Light source area

• Camera lens area

• Time

[This approach was originally called “distributed ray
tracing,” but we will call it distribution ray tracing (as
in probability distributions) so as not to confuse it
with a parallel computing approach.]

16

DRT pseudocode

TraceImage() looks basically the same, except now
each pixel records the average color of jittered sub-
pixel rays.

function traceImage (scene):

for each pixel (i, j) in image do

I(i, j)  0

for each sub-pixel id in (i,j) do

s  pixelToWorld(jitter(i, j, id))

p  COP

d (s - p).normalize()

I(i, j)  I(i, j) + traceRay(scene, p, d, id)

end for

I(i, j)  I(i, j)/numSubPixels

end for

end function

A typical choice is numSubPixels = 5*5.

17

DRT pseudocode (cont’d)

Now consider traceRay(), modified to handle (only)
opaque glossy surfaces:

function traceRay(scene, p, d, id):

(q, N, material)  intersect (scene, p, d)

I  shade(…)

R  jitteredReflectDirection(N, -d, material, id)

I  I + material.kr  traceRay(scene, q, R, id)

return I

end function

18

Pre-sampling glossy reflections
(Quasi-Monte Carlo)

19

Distributing rays over light source area gives:

Soft shadows

20

The pinhole camera, revisited

Recall the pinhole camera:

We can equivalently turn this around by following
rays from the viewer:

21

The pinhole camera, revisited

Given this flipped version:

how can we simulate a pinhole camera more
accurately?

22

Pinhole cameras in the real world require small apertures
to keep the image in focus.

Lenses focus a bundle of rays to one point => can have
larger aperture.

For a “thin” lens, we can approximately calculate where an
object point will be in focus using the the Gaussian lens
formula:

where f is the focal length of the lens.

Lenses

1 1 1
 

i od d f

23

Depth of field

Lenses do have some limitations. The most noticeable is
the fact that points that are not in the object plane will
appear out of focus.

The depth of field is a measure of how far from the object
plane points can be before appearing “too blurry.”

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm 24

Simulating depth of field
Consider how rays flow between the image plane and
the in-focus plane:

We can model this as simply placing our image plane
at the in-focus location, in front of the finite aperture,
and then distributing rays over the aperture (instead
of the ideal center of projection):

25

Simulating depth of field, cont’d

26

In general, you can trace rays through a scene and
keep track of their id’s to handle all of these effects:

Chaining the ray id’s

27

DRT to simulate _________________

Distributing rays over time gives:

28

Summary

What to take home from this lecture:

1. The limitations of Whitted ray tracing.

2. How distribution ray tracing works and what
effects it can simulate.

