Ray Tracing

Daniel Leventhal Adapted from Brian Curless CSE 457 Autumn 2011

Geometric optics

Modern theories of light treat it as both a wave and a particle.

We will take a combined and somewhat simpler view of light – the view of **geometric optics**

Here are the rules of geometric optics:

- Light is a flow of photons with wavelengths. We'll call these flows "light rays."
- Light rays travel in straight lines in free space.
 Light rays do not interfere with each other as
- they cross.Light rays obey the laws of reflection and
- refraction.
- Light rays travel from the light sources to the eye, but the physics is invariant under path reversal (reciprocity).

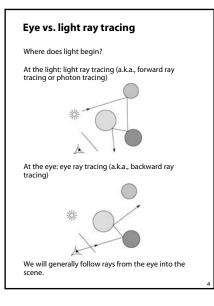
Reading

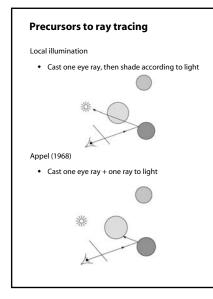
Required:

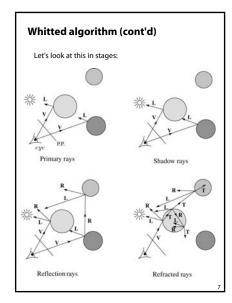
- Shirley, section 10.1-10.7 (handout)
- Triangle intersection handout

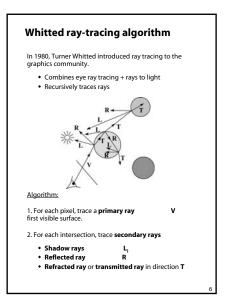
Further reading:

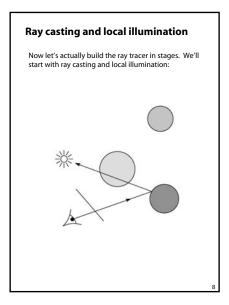
- Shirley errata on syllabus page, needed if you work from his book instead of the handout, which has already been corrected.
- T. Whitted. An improved illumination model for shaded display. Communications of the ACM 23(6), 343-349, 1980.
- A. Glassner. An Introduction to Ray Tracing. Academic Press, 1989.
- K. Turkowski, "Properties of Surface Normal Transformations," Graphics Gems, 1990, pp. 539-547.

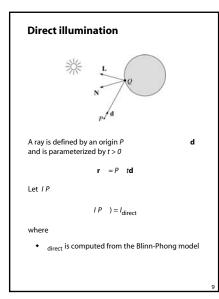




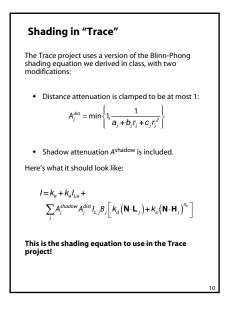








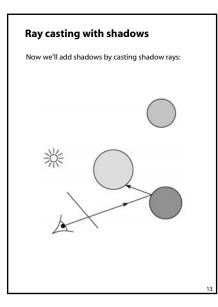
Ray-tracing pseudocode				
We build a ray traced image by casting rays through each of the pixels.				
function tracelmage				
pixel (i,j) in image				
= pixelToWorld				
= COP				
= (A - P)/ -				
I(i,j) = traceRay P				
end for				
end function				
function (scene, , d):				
(t, N ← intersect P				
$Q \leftarrow P$				
I = shade				
return l				
end function				

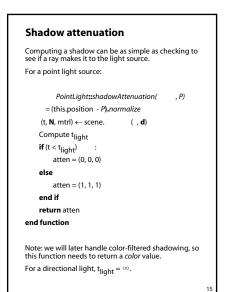


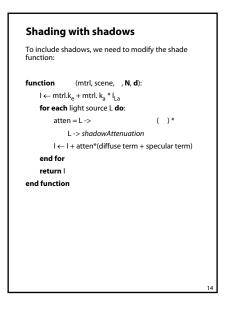
Shading pseudocode

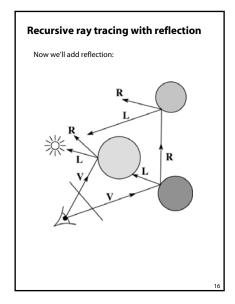
shade function.

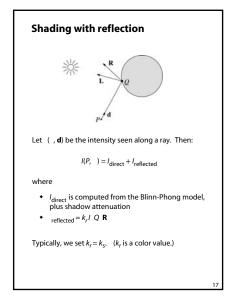
 $\label{eq:constraint} \begin{array}{ll} \text{function} & (mtrl, scene, \ , N, d): \\ I \leftarrow mtrl.k_e + mtrl. k_a * I_{La} \\ \text{for each light source L do:} \\ & \text{atter} = L -> \textit{distanceAttenuation} \\ I \leftarrow I + \textit{atten*}(\textit{diffuse term + specular term}) \\ & \text{end for} \\ & \text{return I} \\ \end{array}$

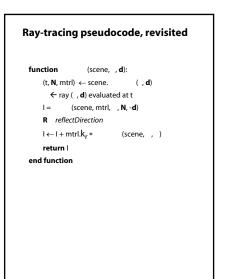


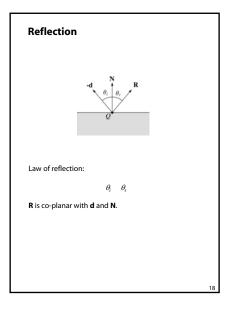




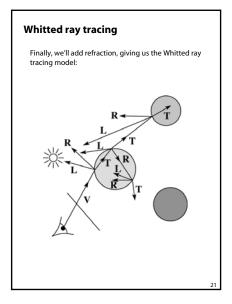


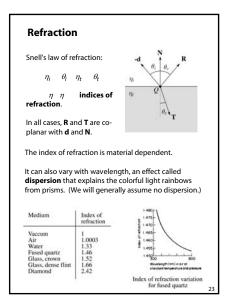


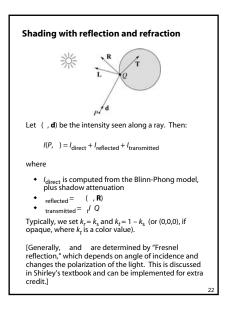




Terminat	ing recursion	
Q		
Possibilities:		
		2





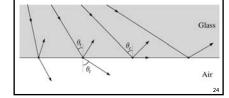


The equation for the angle of refraction can be computed from Snell's law:

What happens when $\eta_i > \eta_t$?

When θ_t is exactly 90°, we say that θ_i has achieved the "critical angle" θ_c

For $\theta_i > \theta_c$, no rays are transmitted, and only reflection occurs, a phenomenon known as "total internal reflection" or TIR.

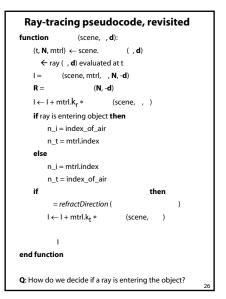


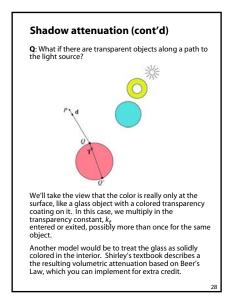
Shirley uses between the	different symbols. Here is the translation em:
	r = R
	t = T
	$\phi = \theta_t$
	$\theta = \theta_r = \theta_i$
	$n = \eta_i$
	$n_t = \eta_t$
	r has two important errors that have n corrected in the handout.
refer to the	e consulting the original text, be sure to errata posted on the syllabus and on the e for corrections.

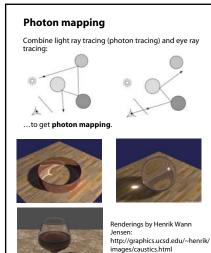
Terminating	recursion.	incl.	refraction
renning	recursion,		renaction

27

: Now tracing?







Intersecting rays with spheres Now we've done everything except figure out what that "scene.intersect(P, d)" function does. Mostly, it calls each object to find out the <u>t</u> value at which the ray intersects the object. Let's start with intersecting spheres... Given • The coordinates of a point along a ray passing through in the direction **d** are: $x = P_x + td_x$ $y = P_v + td_v$ $z = P_z + td_z$ A unit sphere S equation: Find 31

Normals and shading when inside

When a ray is inside an object and intersects the object's surface on the way out, the normal will be pointing *away* points to the outside by default).

You must *negate* shading, reflection, and refraction that follows.

Finally, when shading a point inside of an object, apply k_t to the ambient component, since that "ambient light" had to pass through the object to get there in the first place.

Intersecting rays with spheres

Solution by substitution

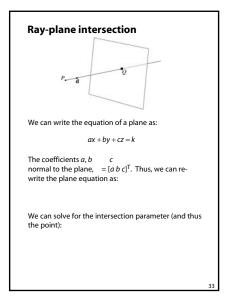
 $x^{2} + y^{2} + z^{2} - 1 = 0$ $(P_{x} + td_{x})^{2} + (P_{y} + td_{y})^{2} + (P_{z} + td_{z})^{2} - 1 = 0$ $at^{2} + bt + c = 0$

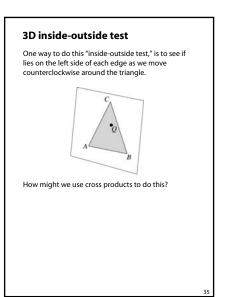
where

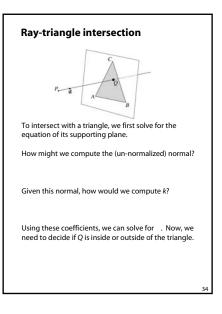
 $a = d_x^2 + d_y^2 + d_z^2$ $b = 2(P_x d_x + P_y d_y + P_z d_z)$ $c = P_x^2 + P_y^2 + P_z^2 - 1$

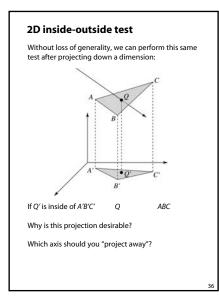
t and what do they mean?

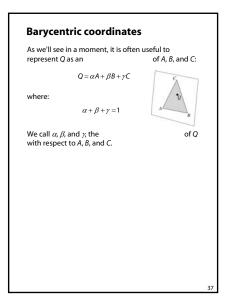
: What is the normal to the sphere at a point (*x*,*y*,*z*) on the sphere?











Interpolating vertex properties

The barycentric coordinates can also be used to interpolate vertex properties such as:

- material properties
- texture coordinates
- normals

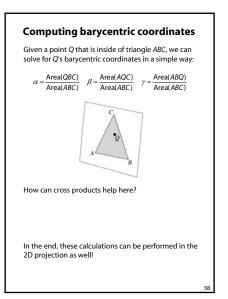
For example:

 $k_d(Q) = \alpha k_d(A) + \beta k_d(B) + \gamma k_d(C)$

interpolation

shading appearance. (Note: don't forget to normalize interpolated normals.)

39



Epsilons

Due to finite precision arithmetic, we do not always get the exact intersection at a surface.

Q: What kinds of problems might this cause?

Q: How might we resolve this?

Intersecting with xformed geometry

In general, objects will be placed using transformations. What if the object being intersected were transformed by a matrix M?

Apply M⁻¹ to the ray first and intersect in object (local) coordinates!

Intersecting with xformed geometry

The intersected normal is in object (local) coordinates. How do we transform it to world coordinates?

Summary

What to take home from this lecture:

- The meanings of all the boldfaced terms.Enough to implement basic recursive ray
- tracing.How reflection and transmission directions are
- computed.

41

- How ray-object intersection tests are performed on spheres, planes, and triangles
- How barycentric coordinates within triangles
 are computed
- How ray epsilons are used.