Surfaces

Reading

Foley et al., Section 11.3

Recommended:

Tensor product Bézier surfaces

Given a grid of control points \(V_{ij} \), forming a **control net**, construct a surface \(S(u,v) \) by:

- treating rows of \(V \) as control points for curves \(V_0(u), ..., V_n(u) \).
- treating \(V_0(u), ..., V_n(u) \) as control points for a curve parameterized by \(v \).

Building surfaces from curves

Let the geometry vector vary by a second parameter \(v \):

\[
\begin{bmatrix} G_1(v) \\ G_2(v) \\ G_3(v) \\ G_4(v) \end{bmatrix} = \mathbf{M} \cdot \mathbf{g}_i

\[
\mathbf{g}_i = \begin{bmatrix} g_{i1} \\ g_{i2} \\ g_{i3} \\ g_{i4} \end{bmatrix}^T
\]

Geometry matrices

By transposing the geometry curve we get:

\[G_j(v)^T = (V \cdot M \cdot g_j)^T \]
\[= g_j^T \cdot M^T \cdot V^T \]
\[= [g_{j1} \ g_{j2} \ g_{j3} \ g_{j4}] \cdot M^T \cdot V^T \]

Combining

\[G_j(v) = [g_{j1} \ g_{j2} \ g_{j3} \ g_{j4}] \cdot M^T \cdot V^T \]

And

\[S(u,v) = U \cdot M \cdot \begin{bmatrix} G_{j1}(v) \\ G_{j2}(v) \\ G_{j3}(v) \\ G_{j4}(v) \end{bmatrix} \]

We get

\[S(u,v) = U \cdot M \cdot \begin{bmatrix} g_{i1} \\ g_{i2} \\ g_{i3} \\ g_{i4} \\ g_{i5} \\ g_{i6} \\ g_{i7} \\ g_{i8} \end{bmatrix} \]

Tensor product surfaces, cont.

Let's walk through the steps:

Control net

Control curves in u

Control polygon at u=1/2

Curve at S(1/2,v)

Which control points are interpolated by the surface?

Bezier Blending Functions

a.k.a. Bernstein polynomials

\[Q(t) = \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix} \]

\[\begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{bmatrix} = B_b(t) \]
Matrix form

Tensor product surfaces can be written out explicitly:

\[S(u, v) = \sum_{i=0}^{n} \sum_{j=0}^{n} V_{ij} B_i^n(u) B_j^n(v) \]

\[= \begin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix} M_{B\text{ézier}} \begin{bmatrix} u^3 \\ u^2 \\ u \\ 1 \end{bmatrix} \]

Tensor product B-spline surfaces

As with spline curves, we can piece together a sequence of Bézier surfaces to make a spline surface. If we enforce C2 continuity and local control, we get B-spline curves:

- treat rows of \(B \) as control points to generate Bézier control points in \(u \).
- treat Bézier control points in \(u \) as B-spline control points in \(v \).
- treat B-spline control points in \(v \) to generate Bézier control points in \(u \).

Tensor product B-splines, cont.

Which B-spline control points are interpolated by the surface?
Trimmed NURBS surfaces

Uniform B-spline surfaces are a special case of NURBS surfaces.

Sometimes, we want to have control over which parts of a NURBS surface get drawn.

For example:

We can do this by trimming the u-v domain.

- Define a closed curve in the u-v domain (a trim curve)
- Do not draw the surface points inside of this curve.

It’s really hard to maintain continuity in these regions, especially while animating.

Surfaces of revolution

Idea: rotate a 2D profile curve around an axis.

What kinds of shapes can you model this way?

Variations

Several variations are possible:

- Scale $C(u)$ as it moves, possibly using length of $T(v)$ as a scale factor.
- Morph $C(u)$ into some other curve $C'(u)$ as it moves along $T(v)$.
 - ...

Constructing surfaces of revolution

Given: A curve $C(u)$ in the yz-plane:

$$C(u) = \begin{bmatrix} 0 \\ c_y(u) \\ c_z(u) \\ 1 \end{bmatrix}$$

Let $R_x(\theta)$ be a rotation about the x-axis.

Find: A surface $S(u,v)$ which is $C(u)$ rotated about the z-axis.

$$S(u,v) = R_x(v) \cdot C(u)$$
General sweep surfaces

The surface of revolution is a special case of a swept surface.

Idea: Trace out surface \(S(u,v) \) by moving a profile curve \(C(u) \) along a trajectory curve \(T(v) \).

\[
S(u,v) = T(T(v)) \cdot C(u)
\]

More specifically:

- Suppose that \(C(u) \) lies in an \((x_c, y_c)\) coordinate system with origin \(O_c \).
- For every point along \(T(v) \), lay \(C(u) \) so that \(O_c \) coincides with \(T(v) \).

Orientation

The big issue:

- How to orient \(C(u) \) as it moves along \(T(v) \)?

Here are two options:

1. **Fixed** (or static): Just translate \(O_c \) along \(T(v) \).
2. Moving. Use the Frenet frame of \(T(v) \).
 - Allows smoothly varying orientation.
 - Permits surfaces of revolution, for example.

Frenet frames

Motivation: Given a curve \(T(v) \), we want to attach a smoothly varying coordinate system.

To get a 3D coordinate system, we need 3 independent direction vectors.

\[
\hat{t}(v) = \text{normalize}(T'(v)) \\
\hat{b}(v) = \text{normalize}(T'(v) \times T''(v)) \\
\hat{n}(v) = \hat{b}(v) \times \hat{t}(v)
\]

As we move along \(T(v) \), the Frenet frame \((\hat{t}, \hat{b}, \hat{n})\) varies smoothly.

Frenet swept surfaces

Orient the profile curve \(C(u) \) using the Frenet frame of the trajectory \(T(v) \):

1. Put \(C(u) \) in the normal plane \(\hat{n} \).
2. Place \(O_c \) on \(T(v) \).
3. Align \(x_c \) for \(C(u) \) with \(-\hat{n} \).
4. Align \(y_c \) for \(C(u) \) with \(\hat{b} \).

If \(T(v) \) is a circle, you get a surface of revolution exactly?
Summary

What to take home:

- How to construct tensor product Bézier surfaces
- How to construct tensor product B-spline surfaces
- Surfaces of revolution
- Construction of swept surfaces from a profile and trajectory curve
 - With a fixed frame
 - With a Frenet frame